Abstract

We report on the device model for the infrared photodetectors based on the van der Waals (vdW) heterostructures with the radiation absorbing graphene layers (GLs). These devices rely on the electron interband photoexcitation from the valence band of the GLs to the continuum states in the conduction band of the inter-GL barrier layers. We calculate the photocurrent and the GL infrared photodetector (GLIP) responsivity at weak and strong intensities of the incident radiation and conclude that the GLIPs can surpass or compete with the existing infrared and terahertz photodetectors. The obtained results can be useful for the GLIP design and optimization.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation

Qing Zhang, Zhou Zhen, Yongfei Yang, Gongwen Gan, Deep Jariwala, and Xudong Cui
Opt. Express 27(13) 18585-18600 (2019)

Interband infrared photodetectors based on HgTe–CdHgTe quantum-well heterostructures

V. Ya. Aleshkin, A. A. Dubinov, S. V. Morozov, M. Ryzhii, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii
Opt. Mater. Express 8(5) 1349-1358 (2018)

High-speed van der Waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides

Yun Gao, Guodong Zhou, Hon Ki Tsang, and Chester Shu
Optica 6(4) 514-517 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
    [Crossref]
  2. T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
    [Crossref]
  3. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
    [Crossref]
  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).
  5. V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).
  6. A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014).
    [Crossref]
  7. E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
    [Crossref]
  8. S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
    [Crossref] [PubMed]
  9. C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
    [Crossref] [PubMed]
  10. C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).
  11. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref] [PubMed]
  12. F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
    [Crossref]
  13. G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
    [Crossref]
  14. V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
    [Crossref]
  15. V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
    [Crossref]
  16. V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
    [Crossref]
  17. V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
    [Crossref]
  18. Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
    [Crossref]
  19. M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
    [Crossref]
  20. G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
    [Crossref]
  21. I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
    [Crossref] [PubMed]
  22. V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).
  23. H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
    [Crossref]
  24. F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
    [Crossref]
  25. L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
    [Crossref]
  26. V. Ryzhii, “Characteristics of quantum-well infrared photodetectors,” J. Appl. Phys. 81, 6442–6448 (1997).
    [Crossref]
  27. H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors (Springer, 2007).
  28. V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
    [Crossref]
  29. V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
    [Crossref]
  30. S. M. Sze, S M 1999 Physics of Semiconductor Devices (Wiley, 1999), p. 103.
  31. F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82, 345422 (2010).
    [Crossref]
  32. M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
    [Crossref]
  33. V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
    [Crossref]
  34. V. Ryzhii and R. Suris, “Nonlocal hot-electron transport and capture model for multiple-quantum-well structures excited by infrared radiation,” Jpn. J. Appl. Phys 40, 513–517 (2001).
    [Crossref]
  35. T. Ishibashi, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. 20, 3804210 (2014).
  36. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
    [Crossref] [PubMed]

2016 (2)

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

2015 (5)

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

2014 (7)

T. Ishibashi, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. 20, 3804210 (2014).

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014).
[Crossref]

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

2013 (3)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

2012 (1)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

2011 (1)

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

2010 (6)

T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82, 345422 (2010).
[Crossref]

2009 (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

2001 (1)

V. Ryzhii and R. Suris, “Nonlocal hot-electron transport and capture model for multiple-quantum-well structures excited by infrared radiation,” Jpn. J. Appl. Phys 40, 513–517 (2001).
[Crossref]

2000 (1)

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

1997 (1)

V. Ryzhii, “Characteristics of quantum-well infrared photodetectors,” J. Appl. Phys. 81, 6442–6448 (1997).
[Crossref]

1996 (1)

L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
[Crossref]

1995 (1)

M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
[Crossref]

1994 (1)

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

1992 (1)

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

Aeschlimann, S.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Aleshkin, V. Ya.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Aleshkin, V.Ya.

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

Andersen, T. I.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Ast, C. R.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Avouris, P.

T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
[Crossref]

Baryshnikov, N. V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

Basko, D.M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Beton, P. H.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Bois, P.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
[Crossref]

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

Burghard, M.

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

Cacho, C.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Calegari, F.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Cavalleri, A.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Ch, Kim

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Chang, Y.-C.

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Chapman, R. T.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Chavez Cervantes, M.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Cho, K.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Choi, S.-Ho

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Colombo, L.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Dubey, M.

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Dubinov, A. A.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

Duboz, J. Y.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
[Crossref]

Eaves, L.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Ershov, M.

M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
[Crossref]

Fang, W.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

Ferrari, A.C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Gabor, N. M.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Gedik, N.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Gierz, I.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Gong, G.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Hague, L.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Hamaguchi, C.

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

Hwang, E.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Ishibashi, T.

T. Ishibashi, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. 20, 3804210 (2014).

Jang, W.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Jarillo-Herrero, P.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Joo, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Kang, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Karasik, V. E.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

Kern, K.

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

Khmyrova, I.

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Kim, C. O.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Kim, Ju H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Kim, S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Kong, J.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Koppens, F. H. L.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Kovalyuk, Z. D.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Kudrynsky, Z. R.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Lee, E. J. H.

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

Lee, J. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Leiman, V.

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Levitov, L. S.

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

Link, S.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Liu, C. H.

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Liu, H. C.

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

Luc, F.

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Lui, C. H.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Lui, H. C.

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors (Springer, 2007).

Ma, Q.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Makarovsky, O.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Marcus, C. M.

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

Marsden, A. J.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Massicotte, M.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Mellor, C. J.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Min, J.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Mitin, V

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Mitin, V.

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

Mitn, V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

Mudd, G. W.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Mueller, T.

T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
[Crossref]

Nagle, J.

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Nair, N. L.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Norris, T. B.

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Novoselov, K.S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Otsuji, T.

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Otsuji T, T.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

Patane, A.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Peters, E. C.

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Ramasubramaniam, A.

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Reserbat-Plantey, A.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Rosencher, F.

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Rudner, M. S.

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

Ryabova, N.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

Ryzhii, M.

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Ryzhii, V.

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

V. Ryzhii and R. Suris, “Nonlocal hot-electron transport and capture model for multiple-quantum-well structures excited by infrared radiation,” Jpn. J. Appl. Phys 40, 513–517 (2001).
[Crossref]

V. Ryzhii, “Characteristics of quantum-well infrared photodetectors,” J. Appl. Phys. 81, 6442–6448 (1997).
[Crossref]

M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Ryzhii M, M.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

Ryzhii V, V.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Satou, A.

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

Schadler, K. G.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Schmidt, P.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Schneider, H.

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors (Springer, 2007).

Shin, D. H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Shur, M. S.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Song, S. C. W.

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

Springate, E.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Starke, U.

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Suris, R.

V. Ryzhii and R. Suris, “Nonlocal hot-electron transport and capture model for multiple-quantum-well structures excited by infrared radiation,” Jpn. J. Appl. Phys 40, 513–517 (2001).
[Crossref]

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Svatek, S. A.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Svintsov, D.

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

Sze, S. M.

S. M. Sze, S M 1999 Physics of Semiconductor Devices (Wiley, 1999), p. 103.

Taniguchi, T.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Thibaudeau, L.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
[Crossref]

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Tielrooij, K. J.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Tredicucci, A.

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014).
[Crossref]

Vasko, F. T.

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82, 345422 (2010).
[Crossref]

Vdovin, E. E.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Vialla, F.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Vinter, B.

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

Vitielo, M. S.

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014).
[Crossref]

Wallace, R. M.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Wang, H.

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Wang, W.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Watanabe, K.

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Wilson, N. R.

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Xia, F.

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Xia, F. N. A.

T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
[Crossref]

Xiao, Di

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Young, A.F.

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Zhang, H.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

Zhong, Z.

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

2D Materials (1)

V. Ryzhii V, T. Otsuji T, M. Ryzhii M, V. Ya. Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, and M. S. Shur, “Graphene vertical cascade interband terahertz and infrared photodetector,” 2D Materials 2, 025002 (2015).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 (2), 803–810 (2010).
[Crossref] [PubMed]

Advanced Mat. (1)

G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynsky, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, “High broad-band photoresponsivity of mechanically formed InSe graphene van der Waals heterostructures,” Advanced Mat. 27, 3760–3766 (2015).
[Crossref]

Appl. Phys. Lett. (5)

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103, 053513 (2013).
[Crossref]

E. C. Peters, E. J. H. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene p-n junction, ” Appl. Phys. Lett. 97, 193102 (2010).
[Crossref]

M. Ershov, V. Ryzhii, and C. Hamaguchi, “Contact and distributed effects in quantum well infrared photodetectors,” Appl. Phys. Lett. 67, 3147–3149 (1995).
[Crossref]

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

V. Ryzhii, T. Otsuji, V.Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Mitin, and M. S. Shur, “Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures,” Appl. Phys. Lett. 104, 163505 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30, 2875–2888 (1994).
[Crossref]

IEEE J. Sel. Top. (1)

T. Ishibashi, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. 20, 3804210 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014).
[Crossref]

J. Appl. Phys. (6)

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V.Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical hot electron terahertz detectors,” J. Appl. Phys. 116, 114504 (2014).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, A. Satou, and T. Otsuji, “Terahertz photomixing using plasma resonances in double-graphene layer structures,” J. Appl. Phys. 113, 174505 (2013).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

L. Thibaudeau, P. Bois, and J. Y. Duboz, “ A self - consistent model for quantum well infrared photodetectors, ” J. Appl. Phys. 79, 446–452 (1996).
[Crossref]

V. Ryzhii, “Characteristics of quantum-well infrared photodetectors,” J. Appl. Phys. 81, 6442–6448 (1997).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya. Aleshkin, A. A. Dubinov, V. Mitin, and M. S. Shur, “Vertical electron transport in van der Waals heterostructures with graphene layers,” J. Appl. Phys. 117, 154504 (2015).
[Crossref]

J. Phys. Soc. Japan (1)

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Jpn. J. Appl. Phys (1)

V. Ryzhii and R. Suris, “Nonlocal hot-electron transport and capture model for multiple-quantum-well structures excited by infrared radiation,” Jpn. J. Appl. Phys 40, 513–517 (2001).
[Crossref]

Nano Lett. (1)

S. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Photodetectors with ultra broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Nat. Photon. (2)

T. Mueller, F. N. A. Xia, and P. Avouris, “Graphene photodetectors for high speed optical communications,” Nat. Photon. 4, 297–301 (2010).
[Crossref]

F. Xia, H. Wang, Di Xiao, M. Dubey, and A. Ramasubramaniam, “Two Dimensional Material Nanophotonics,” Nat. Photon. 8, 899–907 (2014).
[Crossref]

Nat. Phys. (1)

Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, “Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure,” Nat. Phys. 12, 455–459 (2016).
[Crossref]

Nat.Commun. (1)

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. Min, Kim Ch, W. Jang, S. S. Joo, J. S. Lee, Ju H. Kim, S.-Ho Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat.Commun. 5, 3249 (2014).

Nat.Photon (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat.Photon 4, 611–622 (2010).

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

Nature Nanotechnol. (1)

M. Massicotte, P. Schmidt, F. Vialla, K. G. Schadler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, “Picosecond photoresponse in van der Waals heterostructures,” Nature Nanotechnol. 11, 42–46 (2016).
[Crossref]

Opto-Electron.Rev. (1)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitn, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron.Rev. 20, 15–25 (2012).

Phys. Rev. B (2)

V. Ryzhii V, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82, 345422 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T. Chapman, E. Springate, S. Link, U. Starke, C. R. Ast, and A. Cavalleri, “Tracking primary thermalization events in Graphene with photoemission at extreme time scales,” Phys. Rev. Lett. 115, 086803 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Other (3)

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” arXiv: 1609.01381 (2016).

S. M. Sze, S M 1999 Physics of Semiconductor Devices (Wiley, 1999), p. 103.

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Band diagrams of a GLIP [22] (a) in dark at relatively low voltages when EE < EB (weaker inclination of the band profile in the near-emitter barrier layer than in the barrier layers in the structure bulk) and (b) under strong irradiation when EE > EB (the band profile in the near-barrier is steeper than in others). Solid and wavy arrows indicate generation of the electron-hole pair (electron photoexcitation due to the absorption of normally incident radiation) and different electron paths, respectively.
Fig. 2
Fig. 2 Spectral dependences of the responsivity of GLIPs (a) with different conduction band offsets Δ, at a given normalized voltage U = 0.2 and (b) with Δ = 0.4 eV at different normalized voltages U. Dashed line in the left panel corresponds to Δ = 0.4 eV and U = 0.25.
Fig. 3
Fig. 3 Normalized electric fields EE/Etunn(solid lines) and EB/Etunn (dashed lines) versus the normalized intensity S for a GL with N = 1 and ħΩ = 0.60 eV at different normalized voltages U.
Fig. 4
Fig. 4 Normalized electric fields EE/Etunn and EB/Etunn versus the normalized intensity S for GLIPs with different number of GLs N and photon energies ħΩ at U = 0.5: solid lines correspond to N = 1, dashed lines - N = 2, and dashed-doted lines - N = 8.
Fig. 5
Fig. 5 Normalized current density J versus normalized intensity S in GLIPs with different N and ħΩ at U = 0.5: as in Fig. 4, solid lines correspond to N = 1, dashed lines - N = 2, and dashed-doted lines - N = 8.
Fig. 6
Fig. 6 Spectral dependences of the normalized current density J at different normalized intensities S at (a) U = 0.5 and (b) U = 0.25.
Fig. 7
Fig. 7 Spectral dependences of the responsivity, , of a GLIP with N = 1 at different normalized intensities S and voltages U.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

j e = G E + β θ E I , j p n e = G n + β θ n I .
G E = j m e exp ( γ E 3 / 2 E tunn E E ) , G n = j m e exp ( E tunn E n ) .
θ E = 1 1 + τ esc τ relax exp ( η Ω 3 / 2 E tunn E E ) , θ n = ( 1 β ) n 1 + τ esc τ relax exp ( η Ω 3 / 2 E tunn E n + 1 ) ,
1 1 + τ esc τ relax exp ( η Ω 3 / 2 E tunn E E ) ( 1 β ) n p 1 1 + τ esc τ relax exp ( η Ω 3 / 2 E tunn E n + 1 ) = j m e β I [ ( 1 β ) n p exp ( E tunn E n ) exp ( γ E 3 / 2 E tunn E E ) ] ,
1 1 + τ esc τ relax exp ( η Ω 3 / 2 E tunn E E ) 1 p 1 1 + τ esc τ relax exp ( N η Ω 3 / 2 E tunn V / d E E ) = j m e β I [ 1 p exp ( N E tunn V / d E E ) exp ( γ E 3 / 2 E tunn E E ) ] ,
E B = ( V / d E E ) N .
E E dark γ 0 3 / 2 V ( γ 0 3 / 2 + N ) d [ 1 N V ln p ( γ 0 3 / 2 + N ) 2 d E tunn ] γ 0 3 / 2 V ( γ 0 3 / 2 + N ) d ,
E B dark = V ( γ 0 3 / 2 + N ) d [ 1 + γ 3 / 2 V ln p ( γ 0 3 / 2 + N ) 2 d E tunn ] V ( γ 0 3 / 2 + N ) d ,
E E dark V d N E tunn ln ( 1 / p ) , E B dark E tunn ln ( 1 / p ) .
V 0 d E tunn = 1 ( N + 1 ) ln ( 1 / p ) [ 1 ε F Δ 1 + V 0 d ( N + 1 ) F ] 3 / 2 .
j photo e β I p N ( γ 0 3 / 2 + N ) 1 + τ esc τ relax exp [ η 3 / 2 ( γ 0 3 / 2 + N ) d E tunn V ] e β I p .
2 β e p Δ ( κ + 1 ) 2 ( 1 + τ esc / τ relax ) N ( γ 0 3 / 2 + N ) .
I V = j m p e β ( 1 p ) ( 1 + τ esc τ relax ) exp ( γ V / d 3 / 2 d E tunn V ) .
j V = j m ( 1 p ) exp ( γ V / d 3 / 2 d E tunn V ) j m exp ( γ V / d 3 / 2 d E tunn V ) .
I V π p 6 β ( T v W ) 2 ( 1 τ esc + 1 τ relax ) exp ( γ V / d 3 / 2 d E tunn V ) ,
j V π e β τ esc ( T v W ) 2 exp ( γ V / d 3 / 2 d E tunn V ) .
T E T = 1 + I I T , I T = 2 ( T / v W ) 2 3 β τ ε ( 1 + 2 w ) ε F Ω ,
( 4 ε F π Δ ) ( τ esc τ varepsilon ) ( T γ 0 Δ ) exp ( γ 0 Δ T ) 1 .
I I T ( Δ T ) 2 ( V d E tunn ) 2 .
R = β θ I ( 1 2 f Ω ) , f Ω π 2 v W 2 2 2 Ω Δ Ω Σ .
R = β θ I 1 + I / I S .

Metrics