Abstract

We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL

Qunbi Zhuge, Mohamed Morsy-Osman, Xian Xu, Mohammad E. Mousa-Pasandi, Mathieu Chagnon, Ziad A. El-Sahn, and David V. Plant
Opt. Express 20(17) 19599-19609 (2012)

Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems

Yuliang Gao, Alan Pak Tao Lau, Shuangyi Yan, and Chao Lu
Opt. Express 19(22) 21717-21729 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
    [Crossref]
  2. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [Crossref]
  3. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(8), 3824–3835 (2012).
    [Crossref]
  4. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  5. X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.
  6. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  7. P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [Crossref]
  8. C. Yu, S. Zhang, P. Y. Kam, and J. Chen, “Bit-error rate performance of coherent optical M-ary PSK/QAM using decision-aided maximum likelihood phase estimation,” Opt. Express 18(12), 12088–12103 (2010).
    [Crossref] [PubMed]
  9. F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
    [Crossref]
  10. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  11. I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
    [Crossref]
  12. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  13. D. S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]
  14. Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).
  15. Optical Internetworking Forum, “Integrable tunable transmitter assembly multi source agreement,” OIF-ITTA-MSA-01.0, Nov. (2008).
  16. A. Meiyappan, P. Y. Kam, and H. Kim, “A complex-weighted, decision-aided, maximum-likelihood carrier phase and frequency-offset estimation algorithm for coherent optical detection,” Opt. Express 20(18), 20102–20114 (2012).
    [Crossref] [PubMed]
  17. A. Meiyappan, P. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightwave Technol. 31(13), 2055–2069 (2013).
    [Crossref]
  18. K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proc. ECOC’10 (2010), paper We.7.A.3.
    [Crossref]
  19. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
    [Crossref] [PubMed]
  20. Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express 19(22), 21717–21729 (2011).
    [Crossref] [PubMed]
  21. M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. V. Plant, “Cycle Slip Mitigation with Joint Carrier Phase Recovery in Coherent Subcarrier Multiplexing Systems,” in Proc. OFC’16 (2016), paper Tu3K2.
    [Crossref]
  22. M. Selmi, Y. Jaouën, P. Ciblat, and B. Lankl, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC’09 (2009), paper P3.08.
  23. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
    [Crossref]

2013 (1)

2012 (3)

2011 (2)

2010 (4)

C. Yu, S. Zhang, P. Y. Kam, and J. Chen, “Bit-error rate performance of coherent optical M-ary PSK/QAM using decision-aided maximum likelihood phase estimation,” Opt. Express 18(12), 12088–12103 (2010).
[Crossref] [PubMed]

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

2009 (1)

2008 (2)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2001 (1)

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

1992 (1)

F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
[Crossref]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Borel, P.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Bosco, G.

Carena, A.

Carlson, K.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Chagnon, M.

Chen, J.

Ciblat, P.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

Curri, V.

Derr, F.

F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightwave Technol. 10(9), 1290–1296 (1992).
[Crossref]

El-Sahn, Z. A.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Forghieri, F.

Gao, Y.

Hoffmann, S.

Ip, E.

Issac, R.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Kahn, J. M.

Kam, P.

Kam, P. Y.

Katoh, K.

Kikuchi, K.

Kim, H.

Lau, A. P. T.

Loubaton, P.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

Lu, C.

Ly-Gagnon, D. S.

Magill, P.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Meiyappan, A.

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Nelson, L.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Noé, R.

Peckham, D.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Pfau, T.

Plant, D. V.

Poggiolini, P.

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Serpedin, E.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Tsukamoto, S.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wang, Y.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

Winzer, P. J.

Xu, X.

Yan, S.

Yu, C.

Zhang, S.

Zhou, X.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Zhu, B.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

Zhuge, Q.

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

IEEE Commun. Mag. (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

in Proceed. Conf. Rec. GLOBECOM (1)

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proceed. Conf. Rec. GLOBECOM 01, 1386–1390 (2001).

J. Lightwave Technol. (7)

Opt. Express (5)

Other (5)

M. Qiu, Q. Zhuge, Y. Gao, W. Wang, F. Zhang, and D. V. Plant, “Cycle Slip Mitigation with Joint Carrier Phase Recovery in Coherent Subcarrier Multiplexing Systems,” in Proc. OFC’16 (2016), paper Tu3K2.
[Crossref]

M. Selmi, Y. Jaouën, P. Ciblat, and B. Lankl, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC’09 (2009), paper P3.08.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000 km transmission of 50GHz spaced, 10x494. 85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC’12 (2012), paper PDP5C.

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proc. ECOC’10 (2010), paper We.7.A.3.
[Crossref]

Optical Internetworking Forum, “Integrable tunable transmitter assembly multi source agreement,” OIF-ITTA-MSA-01.0, Nov. (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Structure of proposed scheme with phase offset compensation; (b) Schematic diagram of DP-CW-DA-ML.
Fig. 2
Fig. 2 Interleaving implementation of PLL during parallelized processing. CH: channel.
Fig. 3
Fig. 3 Proposed modified superscalar structure for DP-CW-DA-ML.
Fig. 4
Fig. 4 BER versus filter length of SP-CW-DA-ML for (a) 16-QAM, (b) 32-QAM,
Fig. 5
Fig. 5 OSNR penalty at BER = 1 × 10−3 versus linewidth and duration product ( ΔvT ) of various algorithms for (a) QPSK, (b) 16-QAM, (c) 32-QAM.
Fig. 6
Fig. 6 OSNR penalty at BER = 1 × 10−3 versus frequency offset and duration product ( ΔvT ) of various algorithms for (a) QPSK, ΔvT=2× 10 4 , (b) 16-QAM, ΔvT=7× 10 5 , (c) 32-QAM, ΔvT=2× 10 5 .
Fig. 7
Fig. 7 Experimental setup and DSP flow for 10 Gbaud DP-16/32-QAM system. AWG: arbitrary waveform generator, EDFA: erbium doped fiber amplifier, ECL: external cavity laser, OBPF: optical band-width pass filter, PC: polarization controller, PBS: polarization beam splitter, PBC: polarization beam combiner, VOA: variable optical attenuator, ASE: Amplified Spontaneous Emission.
Fig. 8
Fig. 8 BER performance as a function of OSNR, (a) 10 Gbaud DP-16-QAM, (b) 10 Gbaud DP-32-QAM.
Fig. 9
Fig. 9 BER versus FO for different OSNR conditions, (a) 10 Gbaud DP-16-QAM, (b) 10 Gbaud DP-32-QAM.

Tables (1)

Tables Icon

Table 1 Complexity comparison among three methods

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r p (k)= m p (k)exp(j(Δωk+ θ p (k)))+ n p (k),k=0,1,2,p=x,y
V(k+1)=C(k) l=1 L w l (k)r(kl+1) m ^ * (kl+1)
y(k)= [r(k) m ^ * (k),,r(kL+1) m ^ * (kL+1)] T
J(k)= l=1 k | r(l) m ^ (l) C(l1) w T (k)y(l1) | 2
w(k)= Φ 1 (k)z(k),k1
Φ(k)=Φ(k1)+ C 2 (k1) y * (k1) y T (k1)
z(k)=z(k1)+ C(k1) y * (k1)r(k) m ^ (k)
φ offset =arg( V x (initial))arg( V y (initial))
ψ(k)=C(k1) Φ 1 (k1) y * (k1);
g(k)= ψ(k) 1+C(k1) y T (k1)ψ(k) ;
ξ ¯ (k)= ( r x (k) m ^ x (k) V(k))+( r y (k) m ^ y (k) V(k)) 2 ;
w(k)=w(k1)+g(k) ξ ¯ (k);
Φ 1 (k)=Tri{ Φ 1 (k1)g(k) ψ H (k)};
V(k+1)=C(k) w T (k)y(k);

Metrics