Abstract

We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6 ± 0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping

M.F.C. Stephens, I.D. Phillips, P. Rosa, P. Harper, and N.J. Doran
Opt. Express 23(2) 902-911 (2015)

20 dB net-gain polarization-insensitive fiber optical parametric amplifier with >2 THz bandwidth

M. F. C. Stephens, V. Gordienko, and N. J. Doran
Opt. Express 25(9) 10597-10609 (2017)

Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm

Mingyi Gao, Chun Jiang, Weisheng Hu, and Jingyuan Wang
Opt. Express 12(23) 5603-5613 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref] [PubMed]
  2. V. Gordienko, M. F. C. Stephens, S. Takasaka, A. E. El-Taher, I. D. Phillips, W. Forisyak, R. Sugizaki, and N. J. Doran, “Demonstration of an ultra-flat Raman-enhanced fibre optical parametric amplifier (FOPA) with >110nm gain-bandwidth,” in Proceedings of the 42nd European Conference and Exhibition on Optical Communications (VDE, 2016), paper Th.2.P2.SC1.1.
  3. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [Crossref]
  4. M. E. Marhic and G. K. P. Lei, “Hybrid fiber optical parametric amplifiers for broadband optical communication systems,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), paper Th.B2.4.
    [Crossref]
  5. N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [Crossref]
  6. M. E. Marhic, F. S. Yang, L. G. Kazovsky, and Y. Park, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21(17), 1354–1356 (1996).
    [Crossref] [PubMed]
  7. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
    [Crossref] [PubMed]
  8. J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
    [Crossref]
  9. J. M. C. Boggio, C. Lundström, J. Yang, H. Sunnerud, and P. A. Andrekson, “Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2008), paper Tu.3.B.5.
  10. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, 2008), Chap. 13.
  11. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
    [Crossref]
  12. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2009), paper 1.1.4.
  13. J. Kim, Ö. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19(2), 247–251 (2001).
    [Crossref]
  14. M. E. Marhic, F. S. Yang, M. Ho, and L. G. Kazovsky, “High-nonlinearity fiber optical parametric amplifer with periodic dispersion compensation,” J. Lightwave Technol. 17(2), 210–215 (1999).
    [Crossref]
  15. C. Fourcade-Dutin, Q. Bassery, D. Bigourd, A. Bendahmane, A. Kudlinski, M. Douay, and A. Mussot, “12 THz flat gain fiber optical parametric amplifiers with dispersion varying fibers,” Opt. Express 23(8), 10103–10110 (2015).
    [Crossref] [PubMed]
  16. J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
    [Crossref]
  17. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and at parametric amplifers with a multisection dispersion-tailored nonlinear ber arrangement,” J. Opt. Soc. Am. B 20(7), 1532–1537 (2003).
    [Crossref]
  18. S. Takasaka, Y. Taniguchi, M. Takahashi, J. Hiroichi, M. Tadakuma, H. Matsuura, K. Doi, and R. Sugizaki, “Quasi phase-matched FOPA with 50 nm gain bandwidth using dispersion stable highly nonlinear fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3E.2.
    [Crossref]
  19. Y. Taniguchi, J. Hiroishi, M. Takahashi, and R. Sugizaki, “Nonlinear optical fiber, nonlinear optical device, and optical signal processor,” European Patent 1988411A1 (2008).
  20. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities,” Opt. Express 17(20), 17909–17915 (2009).
    [Crossref] [PubMed]
  21. V. Gordienko, M. F. C. Stephens, and N. J. Doran, “Novel broadband gain-spectrum measurement technique for Raman and parametric amplifiers,” in Optical Fiber Communication Conference 2017, paper W2A.11.
  22. R. H. Stolen, W. J. Tomlinson, H. A. Haus, and J. P. Gordon, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).
    [Crossref]
  23. J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  24. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
    [Crossref]
  25. M. F. C. Stephens, A. Redyuk, S. Sygletos, I. D. Phillips, P. Harper, K. J. Blow, and N. J. Doran, “The impact of pump phasemodulation and filtering on WDM signals in a fibre optical parametric amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.43.
  26. Z. Tong, A. Bogris, M. Karlsson, and P. A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers,” Opt. Express 18(3), 2884–2893 (2010).
    [Crossref] [PubMed]

2015 (1)

2010 (1)

2009 (2)

A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities,” Opt. Express 17(20), 17909–17915 (2009).
[Crossref] [PubMed]

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

2007 (2)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref] [PubMed]

2004 (1)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

2003 (1)

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

2001 (2)

J. Kim, Ö. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19(2), 247–251 (2001).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

1999 (1)

1996 (2)

1989 (1)

1987 (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

1982 (1)

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Alic, N.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Andrekson, P.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Andrekson, P. A.

Z. Tong, A. Bogris, M. Karlsson, and P. A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers,” Opt. Express 18(3), 2884–2893 (2010).
[Crossref] [PubMed]

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

Ania-Castañón, J. D.

Bassery, Q.

Bendahmane, A.

Bickham, S. R.

Bigourd, D.

Bjorkholm, J.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Boggio, J. M. C.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Bogris, A.

Boyraz, Ö.

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Chavez Boggio, J. M.

Chiang, T.-K.

Douay, M.

El-Taher, A. E.

Fourcade-Dutin, C.

Fragnito, H. L.

Gordon, J. P.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

Harper, P.

Haus, H. A.

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Ho, M.

Islam, M. N.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2009), paper 1.1.4.

Jie Li,

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Kagi, N.

Karalekas, V.

Karlsson, M.

Kazovsky, L. G.

Kim, J.

Kudlinski, A.

Lantz, E.

Lim, J. H.

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Maillotte, H.

Marconi, J. D.

Marhic, M. E.

Moro, S.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Mussot, A.

Myslivets, E.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Park, Y.

Provino, L.

Radic, S.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Stolen, R.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Stolen, R. H.

Sylvestre, T.

Tomlinson, W. J.

Tong, Z.

Torounidis, T.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2009), paper 1.1.4.

Waarts, R. G.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Windmiller, J. R.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Yang, F. S.

IEEE J. Quantum Electron. (2)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (4)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (2)

Other (9)

M. E. Marhic and G. K. P. Lei, “Hybrid fiber optical parametric amplifiers for broadband optical communication systems,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), paper Th.B2.4.
[Crossref]

M. F. C. Stephens, A. Redyuk, S. Sygletos, I. D. Phillips, P. Harper, K. J. Blow, and N. J. Doran, “The impact of pump phasemodulation and filtering on WDM signals in a fibre optical parametric amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.43.

V. Gordienko, M. F. C. Stephens, and N. J. Doran, “Novel broadband gain-spectrum measurement technique for Raman and parametric amplifiers,” in Optical Fiber Communication Conference 2017, paper W2A.11.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2009), paper 1.1.4.

V. Gordienko, M. F. C. Stephens, S. Takasaka, A. E. El-Taher, I. D. Phillips, W. Forisyak, R. Sugizaki, and N. J. Doran, “Demonstration of an ultra-flat Raman-enhanced fibre optical parametric amplifier (FOPA) with >110nm gain-bandwidth,” in Proceedings of the 42nd European Conference and Exhibition on Optical Communications (VDE, 2016), paper Th.2.P2.SC1.1.

J. M. C. Boggio, C. Lundström, J. Yang, H. Sunnerud, and P. A. Andrekson, “Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth,” in Proceedings of the 34th European Conference and Exhibition on Optical Communications (IEEE, 2008), paper Tu.3.B.5.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, 2008), Chap. 13.

S. Takasaka, Y. Taniguchi, M. Takahashi, J. Hiroichi, M. Tadakuma, H. Matsuura, K. Doi, and R. Sugizaki, “Quasi phase-matched FOPA with 50 nm gain bandwidth using dispersion stable highly nonlinear fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3E.2.
[Crossref]

Y. Taniguchi, J. Hiroishi, M. Takahashi, and R. Sugizaki, “Nonlinear optical fiber, nonlinear optical device, and optical signal processor,” European Patent 1988411A1 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Normalized gain variation (gain variation per 10 dB gain) versus gain bandwidth on one side of the FOPA central frequency fc. Blue dots correspond to some of the most notable achievements experimentally demonstrated with FOPA. Numbers in square brackets denote references in this paper. The red dot corresponds to the gain spectrum reported in this paper (see below, 9 W). *This FOPA was not designed for signal amplification as it employed a non-CW pump in the 1100 nm region. It is therefore not directly comparable and is included for completeness.
Fig. 2
Fig. 2 Schematic of experimental setup.
Fig. 3
Fig. 3 Example optical spectra measured at the input and the output of HNLF with SC as a probe. Calculated gain spectrum is also shown. Fiber length was 25 m, pump wavelength was 1551.6 nm, pump power was 9 W and OSA resolution bandwidth was 2 nm.
Fig. 4
Fig. 4 Experimental FOPA gain spectra for a range of pump wavelengths and a pump power of 5 W for a) 25 m and b) 50 m HNLF. Lines are obtained using the SC and markers using the TL. Different line styles are to visually distinguish different curves.
Fig. 5
Fig. 5 Theoretical FOPA gain spectra (dashed) and experimental (solid) curves for a) 25 m and b) 50 m fibers. Theoretical gain spectra are calculated with following parameters: a pump power of 5 W, S = 0.044 ps⋅nm−2⋅km−1, β4 = 10−56 s4⋅m−1 and a) λ0 = 1551.6 nm, γ = 13.7 W−1⋅km−1 and b) λ0 = 1551.4 nm, γ = 12.5 W−1⋅km−1.
Fig. 6
Fig. 6 Experimental FOPA gain spectra for a series of pump power values at optimal pump wavelength for a) 25 m HNLF (λp = 1551.6 nm) and b) 50 m HNLF (λp = 1551.4 nm). All curves are obtained with a SC.
Fig. 7
Fig. 7 Comparison of experimental FOPA gain spectra obtained at optimal pump wavelengths with 50 m (λp = 1551.4 nm) and 25 m (λp = 1551.6 nm) fibers for equal gain level.
Fig. 8
Fig. 8 Comparison of 60 Gbit/s QPSK signal performance at three signal wavelengths in B2B configuration and after 9 dB amplification by the 25 m FOPA. (a) Q2 versus OSNR for B2B configuration (filled circles and solid trend lines) and after amplification (empty circles and broken trend lines); an example constellation for the amplified signal is shown inset. (b) OSNR penalty for each signal wavelength (filled circles) with trend lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G s =1+ [ γP g sinh( gL ) ] 2 ,

Metrics