Abstract

We experimentally demonstrate on-chip mode-selective wavelength conversions based on the degenerate four-wave mixing (FWM) nonlinear effect in a few-mode silicon waveguide. A multimode waveguide with tapered directional coupler based mode (de)multiplexers is designed and fabricated. Using signals with advanced modulation formats all-optical wavelength conversions of 102.6-Gb/s OFDM-QPSK signals are verified. Experimental results show that only small optical signal-to-noise ratio (OSNR) penalties are observed after wavelength conversion of both modes, which are less than 2 dB for OFDM-QPSK at 7% forward error correction (FEC) threshold.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

Yunhong Ding, Jing Xu, Haiyan Ou, and Christophe Peucheret
Opt. Express 22(1) 127-135 (2014)

Integrated wavelength conversion for adaptively modulated WDM-OFDM signals in a silicon waveguide

Xiaoyan Wang, Xianglian Feng, Lingchen Hunag, Changjian Guo, Xuezhi Hong, and Shiming Gao
Opt. Express 25(25) 31417-31422 (2017)

All-optical wavelength conversion for mode division multiplexed superchannels

Jiaxin Gong, Jing Xu, Ming Luo, Xiang Li, Ying Qiu, Qi Yang, Xinliang Zhang, and Shaohua Yu
Opt. Express 24(8) 8926-8939 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  3. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  4. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  5. L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express 20(18), 19921–19927 (2012).
    [Crossref] [PubMed]
  6. J. Gong, J. Xu, M. Luo, X. Li, Y. Qiu, Q. Yang, X. Zhang, and S. Yu, “All-optical wavelength conversion for mode division multiplexed superchannels,” Opt. Express 24(8), 8926–8939 (2016).
    [Crossref] [PubMed]
  7. Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22(1), 127–135 (2014).
    [Crossref] [PubMed]
  8. W. Pan, Q. Jin, X. Li, and S. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Am. B 32(12), 2417–2424 (2015).
    [Crossref]
  9. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  10. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  11. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  12. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  13. H. Siampour and Y. Dan, “Si nanowire phototransistors at telecommunication wavelengths by plasmon-enhanced two-photon absorption,” Opt. Express 24(5), 4601–4609 (2016).
    [Crossref]
  14. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

2016 (2)

2015 (1)

2014 (1)

2013 (4)

2012 (3)

2008 (2)

2006 (1)

Bao, H.

Da Ros, F.

Dai, D.

Dan, Y.

Ding, Y.

Du, L. B.

Fallahkhair, A. B.

Fini, J. M.

D. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Foster, M. A.

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

Gao, S.

Gong, J.

Huang, B.

Jin, Q.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Li, K. S.

Li, X.

Lipson, M.

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, L.

Lowery, A. J.

Luo, M.

Manolatou, C.

Morshed, M. M.

Murphy, T. E.

Nelson, L. E.

D. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ou, H.

Pan, W.

Peucheret, C.

Qiu, Y.

Richardson, D.

D. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Schmidt, B. S.

Sharping, J. E.

Shi, Y.

Shieh, W.

Siampour, H.

Tang, Y.

Turner, A. C.

Wang, J.

Xu, J.

Yang, Q.

Yu, S.

Zhang, X.

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (8)

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22(1), 127–135 (2014).
[Crossref] [PubMed]

H. Siampour and Y. Dan, “Si nanowire phototransistors at telecommunication wavelengths by plasmon-enhanced two-photon absorption,” Opt. Express 24(5), 4601–4609 (2016).
[Crossref]

J. Gong, J. Xu, M. Luo, X. Li, Y. Qiu, Q. Yang, X. Zhang, and S. Yu, “All-optical wavelength conversion for mode division multiplexed superchannels,” Opt. Express 24(8), 8926–8939 (2016).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express 20(18), 19921–19927 (2012).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Second-order dispersion of a silicon waveguide with height of 220 nm and different widths for (a) TE0 and (b) TE1 modes.
Fig. 2
Fig. 2 Calculated phase mismatch as a function of signal wavelength for single-pump FWM with a pump wavelength of 1570 nm for (a) TE0 mode, (b) TE1 mode, (c) TE0 mode for the pump, TE1 mode for the signal, and TE0 mode for the idler, and (d) TE1 mode for the pump, TE0 mode for the signal, and TE1 mode for the idler.
Fig. 3
Fig. 3 (a) Schematic of designed multimode silicon waveguide for mode multiplexing and de-multiplexing; (b) enlarged coupling area of mode multiplexer and de-multiplexer; (c) microscope image of the two-mode division multiplexing circuit.
Fig. 4
Fig. 4 (a) Measured transmission and mode crosstalk of the two channels (Ch.I and Ch.II) of the two-mode division multiplexing circuit; (b) The relationship between the input power and output power of the multimode silicon waveguide.
Fig. 5
Fig. 5 Experimental setup of the wavelength conversion of optical OFDM signal at 102.6 Gb/s with coherent detection.
Fig. 6
Fig. 6 Spectrum of the signal after FWM considering 8 OFDM subcarriers.
Fig. 7
Fig. 7 (a) Spectrum measured at output port I for pump input from port I and signal input from port I and II, respectively; (b) Spectrum measured at output port II for pump input from port II and signal input from port I and II, respectively; (c) Conversion bandwidth for both TE0 and TE1 modes; (d) Conversion efficiency versus pump power for both TE0 and TE1 modes
Fig. 8
Fig. 8 BER vs. OSNR for the TE1 and TE0 idlers output from demultiplexing port I and II, respectively, with and without crosstalk. Inset: constellation at OSNR of 14.6 dB for (I) TE0 idler w/o crosstalk; (II) TE1 idler w/o crosstalk; (III) TE0 idler w/ crosstalk; (IV) TE1 idler w/ crosstalk.

Metrics