Abstract

We introduce a birefringent interferometer for Fourier transform (FT) spectroscopy in the mid-infrared, covering the vibrational fingerprint region (5-10 µm, 1000-2000 cm−1), which is crucial for molecular identification. Our interferometer employs the crystal calomel (Hg2Cl2), which combines high birefringence (ne-no≈0.55) with a broad transparency range (0.38-20 µm). We adopt a design based on birefringent wedges, which is simple and compact and guarantees excellent delay accuracy and long-term stability. We demonstrate FTIR spectroscopy, with a frequency resolution of 3 cm−1, as well as two-dimensional IR (2DIR) spectroscopy. Our setup can be extended to other spectroscopic modalities such as vibrational circular dichroism and step-scan FT spectroscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scanning Fourier transform spectrometer in the visible range based on birefringent wedges

Aurelio Oriana, Julien Réhault, Fabrizio Preda, Dario Polli, and Giulio Cerullo
J. Opt. Soc. Am. A 33(7) 1415-1420 (2016)

Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer

Antonio Perri, Fabrizio Preda, Cosimo D’Andrea, Erling Thyrhaug, Giulio Cerullo, Dario Polli, and Jürgen Hauer
Opt. Express 25(12) A483-A490 (2017)

2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line

Julien Réhault, Margherita Maiuri, Cristian Manzoni, Daniele Brida, Jan Helbing, and Giulio Cerullo
Opt. Express 22(8) 9063-9072 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  2. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949).
    [Crossref] [PubMed]
  3. P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
    [Crossref]
  4. P. Connes, “Astronomical Fourier spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
    [Crossref]
  5. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 2011).
  6. L. A. Nafie, Vibrational Optical Activity (John Wiley & Sons, 2011).
  7. K. Ataka, T. Kottke, and J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. Int. Ed. Engl. 49(32), 5416–5424 (2010).
    [Crossref] [PubMed]
  8. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
  9. R. J. Bell, Introductory Fourier Transform Spectroscopy (Elsevier, 2012).
  10. L. Mertz, “Astronomical photoelectric spectrometer,” Astron. J. 71, 749–751 (1966).
    [Crossref]
  11. M. F. A’Hearn, F. J. Ahern, and D. M. Zipoy, “Polarization fourier spectrometer for astronomy,” Appl. Opt. 13(5), 1147–1157 (1974).
    [Crossref] [PubMed]
  12. M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66(4), 2807–2811 (1995).
    [Crossref]
  13. X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
    [Crossref]
  14. A. Harvey and D. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
    [Crossref] [PubMed]
  15. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref] [PubMed]
  16. A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
    [Crossref] [PubMed]
  17. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  18. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  19. R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
    [Crossref] [PubMed]
  20. J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
    [Crossref] [PubMed]
  21. F. Preda, V. Kumar, F. Crisafi, D. G. Figueroa Del Valle, G. Cerullo, and D. Polli, “Broadband pump-probe spectroscopy at 20-MHz modulation frequency,” Opt. Lett. 41(13), 2970–2973 (2016).
    [Crossref] [PubMed]
  22. J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
    [Crossref] [PubMed]
  23. C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5(4), 541–549 (1970).
    [Crossref]
  24. M. Gottlieb, A. P. Goutzoulis, and N. B. Singh, “Fabrication and characterization of mercurous chloride acoustooptic devices,” Appl. Opt. 26(21), 4681–4687 (1987).
    [Crossref] [PubMed]
  25. R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, and M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35(21), 3565–3567 (2010).
    [Crossref] [PubMed]
  26. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
    [Crossref] [PubMed]
  27. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
    [Crossref] [PubMed]
  28. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
    [Crossref]
  29. Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).
  30. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
    [Crossref] [PubMed]
  31. A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
    [Crossref] [PubMed]
  32. I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
    [Crossref] [PubMed]
  33. C. Rödig and F. Siebert, “Errors and Artifacts in Time-Resolved Step-Scan FT-IR Spectroscopy,” Appl. Spectrosc. 53(8), 893–901 (1999).
    [Crossref]
  34. P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-Division Interferometry: Time-Resolved Infrared Vibrational Dichroism Spectroscopy,” Appl. Spectrosc. 49(2), 229–236 (1995).
    [Crossref]
  35. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
    [Crossref] [PubMed]
  36. B. Dutta and J. Helbing, “Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy,” Opt. Express 23(12), 16449–16465 (2015).
    [Crossref] [PubMed]

2016 (3)

2015 (2)

2014 (4)

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

2013 (1)

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (2)

2009 (1)

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

2007 (2)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

2004 (2)

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

A. Harvey and D. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[Crossref] [PubMed]

1999 (1)

1995 (2)

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-Division Interferometry: Time-Resolved Infrared Vibrational Dichroism Spectroscopy,” Appl. Spectrosc. 49(2), 229–236 (1995).
[Crossref]

M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66(4), 2807–2811 (1995).
[Crossref]

1987 (1)

1977 (1)

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

1974 (1)

1970 (2)

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5(4), 541–549 (1970).
[Crossref]

P. Connes, “Astronomical Fourier spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

1966 (1)

L. Mertz, “Astronomical photoelectric spectrometer,” Astron. J. 71, 749–751 (1966).
[Crossref]

1960 (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

1949 (1)

A’Hearn, M. F.

Ahern, F. J.

Ataka, K.

K. Ataka, T. Kottke, and J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. Int. Ed. Engl. 49(32), 5416–5424 (2010).
[Crossref] [PubMed]

Barta, C.

R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, and M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35(21), 3565–3567 (2010).
[Crossref] [PubMed]

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5(4), 541–549 (1970).
[Crossref]

Bonvalet, A.

Borrego-Varillas, R.

Brida, D.

Brixner, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Buchvarov, I.

Carrico, I.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Cerullo, G.

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

F. Preda, V. Kumar, F. Crisafi, D. G. Figueroa Del Valle, G. Cerullo, and D. Polli, “Broadband pump-probe spectroscopy at 20-MHz modulation frequency,” Opt. Lett. 41(13), 2970–2973 (2016).
[Crossref] [PubMed]

J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

Chen, G.-C.

Cho, M.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Ciardi, G.

Connes, P.

P. Connes, “Astronomical Fourier spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

Crisafi, F.

DeFlores, L. P.

Deng, Z.

Dereniak, E. L.

Dutta, B.

Fellgett, P. B.

Figueroa Del Valle, D. G.

Fleming, G. R.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Fletcher-Holmes, D.

Ganzer, L.

Gottlieb, M.

Goutzoulis, A. P.

Gretora, I.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

Ha, J.-H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Hamm, P.

Harvey, A.

Harvey, A. R.

M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66(4), 2807–2811 (1995).
[Crossref]

Heberle, J.

K. Ataka, T. Kottke, and J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. Int. Ed. Engl. 49(32), 5416–5424 (2010).
[Crossref] [PubMed]

Helbing, J.

Jacquinot, P.

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Jeon, S.-J.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Joffre, M.

June, Y.-G.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Kaplan, D.

Kim, Z. H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Kislowskij, I. D.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

Klima, M.

Kottke, T.

K. Ataka, T. Kottke, and J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. Int. Ed. Engl. 49(32), 5416–5424 (2010).
[Crossref] [PubMed]

Kudenov, M. W.

Kumar, V.

Lee, J.-S.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Lee, K. F.

Lee, K.-K.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Li, H.

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

Lin, X.

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Maiuri, M.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

Maksimenka, R.

Mancal, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Manzoni, C.

Marangoni, M.

Mertz, L.

L. Mertz, “Astronomical photoelectric spectrometer,” Astron. J. 71, 749–751 (1966).
[Crossref]

Milkiewicz, J.

Moran, S. D.

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

Mukherjee, S. S.

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

Nicodemus, R. A.

Nuernberger, P.

Oksenhendler, T.

Oriana, A.

Oudenhoven, T.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Padgett, M. J.

M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66(4), 2807–2811 (1995).
[Crossref]

Peran, I.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Perekalina, Z. B.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

Polavarapu, P. L.

Polli, D.

Preda, F.

Raleigh, D. P.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Réhault, J.

Rhee, H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Rödig, C.

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Siebert, F.

Singh, N. B.

Skoff, D. R.

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Tokmakoff, A.

Tournois, P.

Trifonov, A.

Wasiljew, A. B.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

Watson, M. D.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Woys, A. M.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

Zanni, M. T.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Zhang, T. O.

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Zhao, H.

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

Zhou, F.

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

Zipoy, D. M.

Angew. Chem. Int. Ed. Engl. (1)

K. Ataka, T. Kottke, and J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. Int. Ed. Engl. 49(32), 5416–5424 (2010).
[Crossref] [PubMed]

Annu. Rev. Astron. Astrophys. (1)

P. Connes, “Astronomical Fourier spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (2)

Astron. J. (1)

L. Mertz, “Astronomical photoelectric spectrometer,” Astron. J. 71, 749–751 (1966).
[Crossref]

Int. J. Light Electron Opt. (1)

X. Lin, F. Zhou, H. Li, and H. Zhao, “Static Fourier-transform spectrometer based on Wollaston prism,” Int. J. Light Electron Opt. 125(14), 3482–3484 (2014).
[Crossref]

J. Chem. Phys. (1)

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

A. M. Woys, S. S. Mukherjee, D. R. Skoff, S. D. Moran, and M. T. Zanni, “A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies,” J. Phys. Chem. B 117(17), 5009–5018 (2013).
[Crossref] [PubMed]

I. Peran, T. Oudenhoven, A. M. Woys, M. D. Watson, T. O. Zhang, I. Carrico, M. T. Zanni, and D. P. Raleigh, “General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins,” J. Phys. Chem. B 118(28), 7946–7953 (2014).
[Crossref] [PubMed]

Krist. Tech. (1)

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5(4), 541–549 (1970).
[Crossref]

Nature (1)

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Opt. Spectrosc. (1)

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, and I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. 42, 653–655 (1977).

Proc. Natl. Acad. Sci. U.S.A. (1)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Rev. Sci. Instrum. (2)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66(4), 2807–2811 (1995).
[Crossref]

Other (5)

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 2011).

L. A. Nafie, Vibrational Optical Activity (John Wiley & Sons, 2011).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Elsevier, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) TWINS interferometer, red arrows and dot represent the optical axes; P45° polarizer at 45° with respect to the horizontal direction; (b) Scheme of the FTIR setup using TWINS; (c) 2DIR setup. Pand P90°, polarizer at 0° and 90° with respect to the horizontal, respectively; WBS, wedged beam splitter.
Fig. 2
Fig. 2 Statistics on the phase shift introduced by the calomel TWINS on a 632.8-nm He-Ne laser measured on 50000 shots. The distribution has a standard deviation of 0.8°. Inset: stability for 21 positions in a single cycle of a He-Ne fringe, measured on two photodiodes in quadrature (PD signals were normalized after subtraction of the mean signal over many cycles). Each cloud corresponds to 50000 measured laser shots. The circle highlights the position taken for the statistics in the main panel.
Fig. 3
Fig. 3 Sequence of mid-IR spectra obtained tuning the OPA and measured with the TWINS spectrometer, calculated as the average between two forward and two backward scans. We observe clearly the absorption of gaseous H2O and CO2 (s: stretch, as: asymmetric stretch, b: bend). These illustrate the high transmission of Calomel over the mid-IR.
Fig. 4
Fig. 4 (a) TWINS interferogram (difference of transmitted and reflected beams from the polarizer) of a 6-µm pulse measured at 30% humidity, averaged over six forward and backward scans and filtered. Horizontal scale corresponds to He-Ne bins, or approximately 1 fs per unit. (b) Absorption spectra of water: comparison between a reference spectrum from a commercial FTIR with resolution of 2.7 cm−1 (red line), and a spectrum obtained from two TWINS interferograms recorded at 30% and 10% humidity (black line).
Fig. 5
Fig. 5 2D-IR spectra of the Rhenium carbonyl complex (η5-HC≡CC5H4)Re(CO)3, see panel g for the chemical formula) at different waiting times. (a-c) parallel polarization, (d-f) perpendicular polarization of pump and probe beams. Contour lines in 10% steps of the largest peak in (a). Negative absorption changes in blue, positive changes in red. (h) Signal due to residual probe interference that is subtracted by chopping. It is 10 times larger than the signal in (a-f) and the color scale has been multiplied by 10 accordingly.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ τ TWINS =( 1 v ge 1 v go )ΔLtanα= ( n ge n go )ΔLtanα c
G= 2 ( n ge n go )tanα

Metrics