Abstract

Deformable mirrors (DMs) are used in adaptive optics for correcting optical aberrations: the DM surface can be deformed to compensate for them. Recently we reported the results on investigation of the stability of Alpao DMs, i.e. how accurately a DM surface shape can be maintained over minutes and hours without any optical feed-back. We observed a creep behavior of the DM surface and we presented a proof-of-concept software compensation for it, showing that very high stability is achievable. In this paper we develop a generalized creep compensation method that covers a wide range of DM use-cases and compensates for 90% – 95% of the creep observed. Furthermore, we report an observation of a DM shape dependence on the magnitude of the DM steering commands over the last few minutes. This effect is likely due to the warming up of the structure supporting the DM surface. Similarly as for creep, we have developed a compensation in software which corrects for about 90% of this effect. Both compensation mechanisms are based solely on pre-calibration input and do not receive any optical feedback about the actual DM surface shape. With the application of these two compensation mechanisms, the Alpao DM exhibits excellent stability and is well suited for feed-forward operation, where high reliability of the DM surface is crucial for operation in the absence of an optical feedback.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Assessing the stability of an ALPAO deformable mirror for feed-forward operation

Urban Bitenc, Nazim A. Bharmal, Timothy J. Morris, and Richard M. Myers
Opt. Express 22(10) 12438-12451 (2014)

Simulational and experimental investigation on the dynamic high frequency aberration of the deformable mirror

Licheng Sun, Lei Huang, Meng Yan, Junbiao Fan, Yamin Zheng, and Chuang Sun
Opt. Express 25(26) 32853-32866 (2017)

Modeling near-null testing method of a freeform surface with a deformable mirror compensator

Yiwei He, Lei Huang, Xi Hou, Wu Fan, and Rongguang Liang
Appl. Opt. 56(33) 9132-9138 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” PASP 65, 229 (1953).
    [Crossref]
  2. R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
    [Crossref]
  3. U. Bitenc, N. A. Bharmal, T. J. Morris, and R. M. Myers, “Assessing the stability of an ALPAO deformable mirror for feed-forward operation,” Opt. Express 22, Iss. 10, pp. 12438–12451 (2014).
    [Crossref] [PubMed]
  4. E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
    [Crossref]
  5. O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
    [Crossref]
  6. B. L. Ellerbroek and C. R. Vogel, “Inverse problems in astronomical adaptive optics,” Inverse Probl. 25, 063001 (2009).
    [Crossref]
  7. C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
    [Crossref]
  8. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [Crossref] [PubMed]
  9. D.J. Wahl, Y. Jian, S. Bonora, R.J. Zawadzki, and M.V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7(1), 1–12 (2016).
    [Crossref] [PubMed]
  10. M. Booth., “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. express,  14(4), 1339–1352 (2006).
    [Crossref] [PubMed]
  11. Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 5(9), 3059–3073 (2014).
    [Crossref] [PubMed]
  12. M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).
  13. A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).
  14. Private communication with Andreas Zepp, Fraunhofer IOSB, Germany.
  15. A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
    [Crossref]

2016 (1)

2015 (1)

2014 (2)

2013 (2)

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

2012 (3)

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

2011 (1)

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

2009 (1)

B. L. Ellerbroek and C. R. Vogel, “Inverse problems in astronomical adaptive optics,” Inverse Probl. 25, 063001 (2009).
[Crossref]

2006 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” PASP 65, 229 (1953).
[Crossref]

Andersen, D.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Andersen, D. R.

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” PASP 65, 229 (1953).
[Crossref]

Basden, A.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Bharmal, N. A.

Bitenc, U.

Blain, C.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Bonora, S.

Booth., M.

Bourgenot, C.

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

Bradley, C.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Brangier, M.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Butterley, T.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Chemla, F.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Correia, C.

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Cua, M.

Davies, R.

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Desmarais, R.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Dipper, N.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Dubra, A.

Dunlop, C.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Ellerbroek, B. L.

B. L. Ellerbroek and C. R. Vogel, “Inverse problems in astronomical adaptive optics,” Inverse Probl. 25, 063001 (2009).
[Crossref]

Gamroth, D.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Gendron, E.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Geng, D.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Girkin, J. M.

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

Gladysz, S.

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).

Gratadour, D.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Henry, D.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Hubert, Z.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Ito, M.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Jackson, K.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Jian, Y.

Kasper, M.

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Kellerer, A.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

Lach, P.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Lamb, M.

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Laporte, P.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Lardière, O.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Longmore, A.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Looker, N.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Love, G. D.

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

Markes, J.-P.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Morris, T.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Morris, T. J.

Myers, R.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Myers, R. M.

Nash, R.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Perret, D.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Pham, L.

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

Rousset, G.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Sarunic, M. V.

Sarunic, M.V.

Saunter, C. D.

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

Sevin, A.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Stein, K.

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).

Sulai, Y. N.

Talbot, G.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Véran, J.-P.

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Vidal, F.

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Vogel, C. R.

B. L. Ellerbroek and C. R. Vogel, “Inverse problems in astronomical adaptive optics,” Inverse Probl. 25, 063001 (2009).
[Crossref]

Wahl, D.J.

Wong, K. S. K.

Younger, E.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Zawadzki, R. J.

Zawadzki, R.J.

Zepp, A.

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).

Adv. Opt. Techn. (1)

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Adv. Opt. Techn. 2(5–6), 433–437 (2013).

Annu. Rev. Astron. Astrophys. (1)

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Astron. Astrophys. (1)

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, A. Basden, G. Rousset, R. Myers, F. Chemla, A. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng, D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, A. Sevin, G. Talbot, and E. Younger, “MOAO first on-sky demonstration with CANARY,” Astron. Astrophys. 529, L2 (2011).
[Crossref]

Biomed. Opt. Express (3)

Inverse Probl. (1)

B. L. Ellerbroek and C. R. Vogel, “Inverse problems in astronomical adaptive optics,” Inverse Probl. 25, 063001 (2009).
[Crossref]

J. Europ. Opt. Soc. Rap. Public. (1)

C. Bourgenot, C. D. Saunter, G. D. Love, and J. M. Girkin, “Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy,” J. Europ. Opt. Soc. Rap. Public. 8, 13027 (2013).
[Crossref]

Opt. express (1)

PASP (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” PASP 65, 229 (1953).
[Crossref]

Proc. SPIE (2)

O. Lardière, R. Nash, J.-P. Markes, D. Andersen, C. Bradley, C. Blain, R. Desmarais, D. Gamroth, M. Ito, K. Jackson, P. Lach, and L. Pham, “Final opto-mechanical design of Raven, a MOAO science demonstrator for Subaru,” Proc. SPIE 8447, 844753 (2012).
[Crossref]

A. Kellerer, F. Vidal, E. Gendron, Z. Hubert, D. Perret, and G. Rousset, “Deformable mirrors for open-loop adaptive optics,” Proc. SPIE 8447, 844765 (2012).
[Crossref]

Other (2)

M. Lamb, D. R. Andersen, J.-P. Véran, C. Correia, and O. Lardière, “Calibrating the non-common path aberrations on the MOAO system RAVEN and first science results using RAVEN,” AO4ELT4 - Conference Proceedings, https://doi.org/10.20353/K3T4CP1131535 (2016).

Private communication with Andreas Zepp, Fraunhofer IOSB, Germany.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Phase-maps demonstrating the shape and the amount of the thermal effect. The initial DM shape is subtracted from all four images to demonstrate the deviation from the initial shape. The left three images demonstrate the stability of the DM surface over 2 minutes if the actuator commands are kept constant. The fourth image exhibits the change in DM shape after random commands (evenly distributed within [−0.5, 0.5], changed once per second) have been applied to actuators for two minutes. The “ripples” seen in the phase-maps are the remnants of the interferometer fringes (measurement “noise”).
Fig. 2
Fig. 2 The temporal evolution of the thermal effect. The black line in the lower part shows typical actuator commands applied. The blue circles show the RMS of the surface change due to the thermal effect. The green line is a fit to the measured points. The red dots demonstrate the improvement in the DM surface stability, achieved by the software compensation described in the text.
Fig. 3
Fig. 3 The amplitude of the thermal effect as a function of the electrical power dissipated in the actuator coils. The measured values (blue circles) are very well approximated by a linear function (line). Additional patterns of commands were tested to demonstrate that the thermal effect amplitude only depends on p: random commands multiplied by 2 but applied only on every other step (green x), an alternating constant added to all actuators (stars) and an alternating defocus term (+).
Fig. 4
Fig. 4 An illustration of the creep compensated usage of the DM. Before t0, the DM shape has stabilized at 0 over several hours, tB0 → ∞. At point t0 the user added ΔB1,0 to the actuator commands to change the DM shape to 1. This shape is then maintained by the creep compensation mechanism for a length of time tB1. At point t1 the user added ΔB2,1 to the actuator commands to change the DM shape to 2.
Fig. 5
Fig. 5 An illustration of the DM shapes applied for the measurement of the calibration constants x(t) (left) and x(t, tB) (right).
Fig. 6
Fig. 6 The creep correction factor x. Upper: x(t) measured over 6 hours from a single transition ��. Lower: x(t, tB) measured over 1 hour from a double transition ����.
Fig. 7
Fig. 7 A comparison of x(t, tB) obtained in two different ways. The full lines are calculated from Eqs. (10) and (8). The dots are measured in the calibration described in Sec. 4.2.2. They agree very well, within 3%.
Fig. 8
Fig. 8 The stability of the final shape, 7, without creep compensation (upper) and with it (lower).
Fig. 9
Fig. 9 The stability of the intermediate shapes in the test. Upper: without creep compensation and with it. Lower: with the creep compensation, i.e. the black curves from the upper plot are zoomed in.
Fig. 10
Fig. 10 The repeatability of DM shapes with and without the creep compensation.

Tables (1)

Tables Icon

Table 1 Explanation of terms and symbols used in Eq. (6)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p = i = 1 N ( c i + o i ) 2
P = 0 p ( t ) e t / τ d t
P i + 1 = e Δ t / τ P i + ( 1 e Δ t / τ ) p ( C i )
C i + 1 = C requested P i + 1 P NORM C THERMAL
B ( t ) = B ( 0 ) x ( t ) [ B ( 0 ) A ] .
B N ( t ) = B N ( t N 1 ) i = 0 N 1 Δ x i , N ( t ) [ B N B i ] .
x ( t ) x ( t , t B = )
x ( t ) = C t α t β + D .
x i + 1 ( t , t B ) = x i ( t , t B ) + RMS [ 𝒜 ( t , t B ) ] RMS [ 𝒜 ( t 1 ) ] 1
x ( t , t B ) = x ( t ) + x ( t B ) x ( t + t B )

Metrics