Abstract

We propose a novel simple space division multiplexing (SDM) node which is rearrangeble nonblocking, and effectively utilizes enhanced network resources through SDM. The proposed node can reduce a number of ports of wavelength selective switches (WSSs) and a number of WSS modules by modifying conventional multi-stage switches and employing integrated multiple arrayed WSSs. We experimentally actualized the newly proposed node, and demonstrate wavelength, core, and direction switching functions based on 127-Gbps Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) signals. We also confirm the feasibility of the proposed SDM node through SDM transmission experiments using a 40-km multicore fiber and a multicore amplifier.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly reliable and large-scale subsystem-modular optical cross-connect

Shuhei Yamakami, Yojiro Mori, Hiroshi Hasegawa, and Ken-ichi Sato
Opt. Express 25(15) 17982-17994 (2017)

Low-Cost CDC ROADM Architecture Based on Stacked Wavelength Selective Switches

Haining Yang, Brian Robertson, Peter Wilkinson, and Daping Chu
J. Opt. Commun. Netw. 9(5) 375-384 (2017)

Node Architecture and Design of Flexible Waveband Routing Optical Networks

Hiroshi Hasegawa, Suresh Subramaniam, and Ken-ichi Sato
J. Opt. Commun. Netw. 8(10) 734-744 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed transmission with 91.4 b/s/Hz aggregate spectral efficiency,” in ECOC 2012 (2012), paper Th.3.C.1.
  2. Optical Transport Working Group, “Optical transport use cases,” Open Networking Foundation (2015).
  3. D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(Feb), 60–68 (2015).
    [Crossref]
  4. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32(2), 406–424 (1953).
    [Crossref]
  5. M. D. Feuer, L. E. Nelson, K. Abedin, X. Zhou, T. F. Taunay, J. F. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, and D. M. Marom, “ROADM system for space division multiplexing with spatial superchannels,” in OFC 2013 (2013), paper PDP5B.8.
  6. N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R. J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S. U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in OFC 2015 (2015), paper Th5C.5.
  7. H. C. Le, H. Hasegawa, and K.-I. Sato, “Hierarchical optical path network design algorithm considering waveband add/drop ratio constraint,” J. Opt. Commun. Netw. 2(10), 872 (2010).
    [Crossref]
  8. V. Kamchevsk, A. K. Medhin, F. Da Ros, F. Ye, R. Asif, A. M. Fagertun, S. Ruepp, M. L. Berger, L. Dittmann, T. Morioka, L. K. Oxenlowe, and M. Galili, “Experimental demonstration of multidimensional switching nodes for all-optical data centre networks,” in ECOC 2015 (2015), paper Tu.1.2.2.
  9. Y. Iwai, H. Hasegawa, and K.-I. Sato, “Large-scale photonic node architecture that utilizes interconnected small scale optical cross-connect sub-systems,” in ECOC 2012 (2012), paper We.3.D.3.
  10. V. E. Beneš, “On rearrangeable three-stage connecting networks,” Bell Syst. Tech. J. 41(5), 1481–1492 (1962).
    [Crossref]
  11. E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
    [Crossref]
  12. Y. Ikuma, K. Suzuki, N. Nemoto, E. Tashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 Wavelength selective switch for low-loss transponder aggregator,” in OFC 2015 (2015), paper Th5A.4.
  13. K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” in OFC 2016 (2016), paper Th3E.1.
  14. S. Tibuleac and M. Filer, “Transmission impairments DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010).
    [Crossref]

2015 (1)

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(Feb), 60–68 (2015).
[Crossref]

2010 (2)

2006 (1)

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

1962 (1)

V. E. Beneš, “On rearrangeable three-stage connecting networks,” Bell Syst. Tech. J. 41(5), 1481–1492 (1962).
[Crossref]

1953 (1)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32(2), 406–424 (1953).
[Crossref]

Basch, E. B.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

Beneš, V. E.

V. E. Beneš, “On rearrangeable three-stage connecting networks,” Bell Syst. Tech. J. 41(5), 1481–1492 (1962).
[Crossref]

Blau, M.

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(Feb), 60–68 (2015).
[Crossref]

Clos, C.

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32(2), 406–424 (1953).
[Crossref]

Egorov, R.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

Elby, S.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

Filer, M.

Gringeri, S.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

Hasegawa, H.

Le, H. C.

Marom, D. M.

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(Feb), 60–68 (2015).
[Crossref]

Sato, K.-I.

Tibuleac, S.

Bell Syst. Tech. J. (2)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32(2), 406–424 (1953).
[Crossref]

V. E. Beneš, “On rearrangeable three-stage connecting networks,” Bell Syst. Tech. J. 41(5), 1481–1492 (1962).
[Crossref]

IEEE Commun. Mag. (1)

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(Feb), 60–68 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Other (8)

V. Kamchevsk, A. K. Medhin, F. Da Ros, F. Ye, R. Asif, A. M. Fagertun, S. Ruepp, M. L. Berger, L. Dittmann, T. Morioka, L. K. Oxenlowe, and M. Galili, “Experimental demonstration of multidimensional switching nodes for all-optical data centre networks,” in ECOC 2015 (2015), paper Tu.1.2.2.

Y. Iwai, H. Hasegawa, and K.-I. Sato, “Large-scale photonic node architecture that utilizes interconnected small scale optical cross-connect sub-systems,” in ECOC 2012 (2012), paper We.3.D.3.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Tashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 Wavelength selective switch for low-loss transponder aggregator,” in OFC 2015 (2015), paper Th5A.4.

K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” in OFC 2016 (2016), paper Th3E.1.

M. D. Feuer, L. E. Nelson, K. Abedin, X. Zhou, T. F. Taunay, J. F. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, and D. M. Marom, “ROADM system for space division multiplexing with spatial superchannels,” in OFC 2013 (2013), paper PDP5B.8.

N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R. J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S. U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in OFC 2015 (2015), paper Th5C.5.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed transmission with 91.4 b/s/Hz aggregate spectral efficiency,” in ECOC 2012 (2012), paper Th.3.C.1.

Optical Transport Working Group, “Optical transport use cases,” Open Networking Foundation (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Overview of SDM node.
Fig. 2
Fig. 2 (a) Concept of SDM node based on matrix switch. (b) Practical example of SDM node using R&S switch configuration.
Fig. 3
Fig. 3 (a) Concept of SDM node based on multi-stage switches. (b) Practical example of SDM node employing R&S switch configuration at each stage.
Fig. 4
Fig. 4 (a) Concept of proposed SDM node. (b) Example of SDM node employing R&S switch configuration at each stage. (c) Example of SDM node by interchanging the locations of WSSs compared to (b).
Fig. 5
Fig. 5 (a) Proposed SDM node, (b) Function of K x M contention WSS. (c) Example of 1 x N WSS configuration. (d) Example of K x M contention WSS configuration.
Fig. 6
Fig. 6 Comparison of the number of WSS ports in each switch architecture.
Fig. 7
Fig. 7 Comparison of the number of WSS modules in each switch architecture.
Fig. 8
Fig. 8 (a) Evaluation model of strictly nonblocking SDM node. (b) Evaluation model of the proposed SDM node. (c) Flow chart for evaluation.
Fig. 9
Fig. 9 Histogram of number of established optical paths in the proposed SDM node and in the strictly nonblocking node.
Fig. 10
Fig. 10 (a) Target experimental configuration for the proposed SDM node. (b) Experimental setup.
Fig. 11
Fig. 11 Optical signal spectra. (a) Spectra at input of the proposed SDM node. (b) Spectra at output of the proposed SDM node.
Fig. 12
Fig. 12 Q factor at input and output of proposed SDM node.

Metrics