Abstract

We report fast electro-optic response independent of cell thickness in cholesteric liquid crystals (ChLCs). Usually, an electric field normal to the helix axis of ChLCs induces two fast and one slow response components: helical elongation (slow one), helical deformation (fast one), and flexoelectric effect (fast one). In this study, we found that a planarly aligned ChLC applied with an in-plane electric field exhibited only fast response components because the glass substrates suppressed the motion of the helical elongation. Furthermore, we demonstrated complete separation of the remaining fast components by using dielectric measurement system. Consequently, we were able to analyze dynamics of the helical deformation in detail, in which response times exhibited quadratic dependence on the helical pitch and no dependence on the cell thickness.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays

Yo Inoue and Hiroshi Moritake
Opt. Express 24(20) 23027-23036 (2016)

Helical pitch dependence of the electro-optic characteristics in polymer/cholesteric liquid crystal nanocomposites

Hoekyung Kim, Junji Kobashi, Yasutaka Maeda, Hiroyuki Yoshida, and Masanori Ozaki
Opt. Mater. Express 6(4) 1138-1145 (2016)

In situobservation of dynamic pitch jumps of in-planar cholesteric liquid crystal layers based on wavelength-swept laser

Myeong Ock Ko, Sung-Jo Kim, Jong-Hyun Kim, and Min Yong Jeon
Opt. Express 26(22) 28751-28762 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  2. K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
    [Crossref]
  3. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [Crossref] [PubMed]
  4. C.-L. Pan and R.-P. Pan, “Liquid-crystal-based electrically tunable THz optical devices,” Proc. SPIE 6487, 648709 (2007).
    [Crossref]
  5. X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
    [Crossref]
  6. R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys. 43(5), 2029–2037 (1972).
    [Crossref]
  7. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).
  8. C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
    [Crossref]
  9. R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14(7), 208–209 (1969).
    [Crossref]
  10. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
    [Crossref] [PubMed]
  11. Y. Inoue and H. Moritake, “Discovery of a transiently separable high-speed response component in cholesteric liquid crystals with a uniform lying helix,” Appl. Phys. Express 8(6), 061701 (2015).
    [Crossref]
  12. L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
    [Crossref]
  13. H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
    [Crossref]
  14. H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
    [Crossref]
  15. G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
    [Crossref]
  16. D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
    [Crossref]

2015 (1)

Y. Inoue and H. Moritake, “Discovery of a transiently separable high-speed response component in cholesteric liquid crystals with a uniform lying helix,” Appl. Phys. Express 8(6), 061701 (2015).
[Crossref]

2012 (1)

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

2011 (2)

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

2010 (1)

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

2007 (1)

C.-L. Pan and R.-P. Pan, “Liquid-crystal-based electrically tunable THz optical devices,” Proc. SPIE 6487, 648709 (2007).
[Crossref]

2006 (2)

C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

2001 (1)

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

1994 (1)

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

1993 (1)

K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

1972 (1)

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys. 43(5), 2029–2037 (1972).
[Crossref]

1969 (1)

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14(7), 208–209 (1969).
[Crossref]

Blatch, A. E.

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

Broughton, B. J.

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

Castles, F.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Chen, H.-L.

Clarke, M. J.

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

Coles, H. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

Coles, M. J.

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

Gardiner, D. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Hands, P. J. W.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Hegde, G.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

Hsieh, C.-F.

Hu, W.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Inoue, Y.

Y. Inoue and H. Moritake, “Discovery of a transiently separable high-speed response component in cholesteric liquid crystals with a uniform lying helix,” Appl. Phys. Express 8(6), 061701 (2015).
[Crossref]

Jin, B.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Kim, W.-S.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Komitov, L.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Lackner, A. M.

K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
[Crossref]

Lagerwall, S. T.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Lim, K. C.

K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
[Crossref]

Lin, T.-H.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Lin, X.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Lu, Y.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Margerum, J. D.

K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
[Crossref]

Meyer, R. B.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14(7), 208–209 (1969).
[Crossref]

Moritake, H.

Y. Inoue and H. Moritake, “Discovery of a transiently separable high-speed response component in cholesteric liquid crystals with a uniform lying helix,” Appl. Phys. Express 8(6), 061701 (2015).
[Crossref]

Morris, S. M.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

Musgrave, B.

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

Pan, C.-L.

Pan, R.-P.

Patel, J. S.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Qasim, M. M.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Rafuse, M. J.

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys. 43(5), 2029–2037 (1972).
[Crossref]

Seok Choi, S.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Soref, R. A.

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys. 43(5), 2029–2037 (1972).
[Crossref]

Stebler, B.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Strigazzi, A.

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

Tang, T.-T.

Wang, C.-T.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Wang, W.-Y.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Wilkinson, T. D.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Willmott, J.

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

Wu, J.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Wu, Z.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Xu, F.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Zheng, Z.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Zhu, G.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

AIP Adv. (1)

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Appl. Phys. Express (1)

Y. Inoue and H. Moritake, “Discovery of a transiently separable high-speed response component in cholesteric liquid crystals with a uniform lying helix,” Appl. Phys. Express 8(6), 061701 (2015).
[Crossref]

Appl. Phys. Lett. (5)

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14(7), 208–209 (1969).
[Crossref]

K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993).
[Crossref]

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W.-S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

J. Appl. Phys. (3)

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys. 43(5), 2029–2037 (1972).
[Crossref]

L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi, “Sign reversal of the linear electro-optic effect in the chiral nematic phase,” J. Appl. Phys. 76(6), 3762–3768 (1994).
[Crossref]

J. Mater. Chem. (1)

H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Proc. SPIE (1)

C.-L. Pan and R.-P. Pan, “Liquid-crystal-based electrically tunable THz optical devices,” Proc. SPIE 6487, 648709 (2007).
[Crossref]

Other (2)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Alignment of uniform lying helix and (b) three response components caused by application of an electric field normal to the helix.
Fig. 2
Fig. 2 (a) Planar alignment of ChLCs with an electric field normal to the helix.
Fig. 3
Fig. 3 A planarly aligned ChLC device with bulk electrodes to apply a homogenous electric field in the depth direction.
Fig. 4
Fig. 4 The electro-optic effect of the planarly aligned ChLC device: (a) optical micrographs under crossed polarizers at zero field and E = 0.8 Ec, (b) transmission spectra at different fields, and (c) a response curve of a He-Ne laser when applying fields of E = 0.8Ec for 1 ms and 10 s.
Fig. 5
Fig. 5 Changes of index ellipsoid originating from FE, HE, and HD.
Fig. 6
Fig. 6 The field-intensity dependence of the electro-optic effect: (a) birefringence and (b) response times.
Fig. 7
Fig. 7 (a) Measurement system and (b) electric fields in the cell.
Fig. 8
Fig. 8 (a) Rise response and (b) decay response curves of the capacitance calculated by measuring VR and θ.
Fig. 9
Fig. 9 The helical pitch dependence of response times: (a) rise time, (b) decay time, and (c) response times versus helical pitches.
Fig. 10
Fig. 10 The thickness dependence of response times: (a) rise time, (b) decay time, and (c) a comparison between the NLC and the HD component of the ChLC.
Fig. 11
Fig. 11 Director distribution of LC molecules when applying the electric field into NLC and ChLC cells.

Tables (1)

Tables Icon

Table 1 Material properties used in the experiment.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ d = γ d 2 πK ,
F= 1 2 K 11 (n) 2 + 1 2 K 22 ( n(×n) 2π p ) 2 + 1 2 K 33 ( n×(×n) ) 2 1 2 ε 0 Δε (nE) 2 { e 1 (n)n+ e 3 ( n×(×n) )} E ,
E c = π 2 p 0 K 22 ε 0 Δε ,
Φ= π 16 ( n || 2 n 2 n || 2 + n 2 ) 2 . p ( n || n ) 2 λ 2 [ 1 4 λ 2 p 2 ( n || n ) 2 ] .d,
I=100 sin 2 ( πΔnd λ ),
Y LC =G+jB= V R R V signal cosθ+j V R R V signal sin θ .
{ G= V R R V signal cosθ. B=ωC= V R R V signal sinθ V R 2πfR V signal sinθ ,

Metrics