Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).

[Crossref]
[PubMed]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).

[Crossref]
[PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).

[Crossref]
[PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).

[Crossref]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).

[Crossref]
[PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).

[Crossref]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).

[Crossref]
[PubMed]

J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).

[Crossref]
[PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).

[Crossref]
[PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).

[Crossref]
[PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]
[PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).

[Crossref]
[PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).

[Crossref]
[PubMed]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).

[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).

[Crossref]
[PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).

[Crossref]
[PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).

[Crossref]
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).

[Crossref]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).

[Crossref]
[PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).

[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).

[Crossref]
[PubMed]

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).

[Crossref]
[PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).

[Crossref]
[PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).

[Crossref]
[PubMed]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).

[Crossref]
[PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]
[PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).

[Crossref]
[PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).

[Crossref]
[PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).

[Crossref]
[PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).

[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).

[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).