Abstract

Raman spectra for a natural water sample have been comprehensively investigated as a function of temperature and salinity, and we demonstrate that temperature and salinity can be determined from Raman spectra with RMS errors consistently below ±0.2 °C and ±0.6 PSU respectively where there is variation only in one parameter. Most significantly, we have applied multivariate methods to show that both temperature and salinity can be determined simultaneously from Raman spectra with RMS errors of ±0.7 °C and ±1.4 PSU respectively, and designed a three-channel Raman spectrometer that will be used for future studies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of fluorescence on Raman remote sensing of temperature in natural water samples

Andréa de Lima Ribeiro, Christopher Artlett, Penelope A. Ajani, Caro Derkenne, and Helen Pask
Opt. Express 27(16) 22339-22351 (2019)

Optical remote sensing of water temperature using Raman spectroscopy

C. P. Artlett and H. M. Pask
Opt. Express 23(25) 31844-31856 (2015)

Ultimate sensing resolution of water temperature by remote Raman spectroscopy

Myoung-Kyu Oh, Hoonsoo Kang, Nan Ei Yu, Bok Hyeon Kim, JoonHeon Kim, JoonSeok Lee, and Gi Woo Hyung
Appl. Opt. 54(10) 2639-2646 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).
  2. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
    [Crossref]
  3. G. E. Walrafen, “Raman spectral studies of the effects of solutes and pressure on water structure,” J. Chem. Phys. 55, 768–792 (1971).
    [Crossref]
  4. P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
    [Crossref]
  5. C. H. Chang and L. A. Young, “Seawater temperature measurement from Raman spectra,” Tech. rep., N62269-73-C-0073, ARPA Order 2194 (1972).
  6. D. A. Leonard and B. Caputo, “Raman remote sensing of the ocean mixed-layer depth,” Optical Engineering 22, 223288 (1983).
    [Crossref]
  7. M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
    [Crossref] [PubMed]
  8. C. P. Artlett and H. M. Pask, “Optical remote sensing of water temperature using raman spectroscopy,” Opt Express 23, 31844–31856 (2015).
    [Crossref] [PubMed]
  9. S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
    [Crossref]
  10. T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).
  11. L. Schemel, “Simplified conversions between specific conductance and salinity units for use with data from monitoring stations,” IEP Newsletter 14, 17–18 (2001).
  12. S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
    [Crossref]
  13. D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
    [Crossref] [PubMed]
  14. E. S. Fry, Y. Emery, X. Quan, and J. W. Katz, “Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean,” Appl. Opt. 36, 6887–6894 (1997).
    [Crossref]
  15. A. Rudolf and T. Walther, “A Brillouin lidar for remote sensing of the temperature profile in the ocean: Towards the laboratory demonstration,” in “IEEE Oceans 2012,”, 1–6 (2012).
  16. A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean.”, Optical Engineering 53(5), 051407 (2014).
    [Crossref]
  17. H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

2015 (2)

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

C. P. Artlett and H. M. Pask, “Optical remote sensing of water temperature using raman spectroscopy,” Opt Express 23, 31844–31856 (2015).
[Crossref] [PubMed]

2014 (1)

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean.”, Optical Engineering 53(5), 051407 (2014).
[Crossref]

2011 (1)

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

2005 (1)

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

2004 (1)

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

2001 (2)

L. Schemel, “Simplified conversions between specific conductance and salinity units for use with data from monitoring stations,” IEP Newsletter 14, 17–18 (2001).

S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
[Crossref]

1997 (1)

1990 (1)

P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
[Crossref]

1983 (1)

D. A. Leonard and B. Caputo, “Raman remote sensing of the ocean mixed-layer depth,” Optical Engineering 22, 223288 (1983).
[Crossref]

1979 (1)

1971 (1)

G. E. Walrafen, “Raman spectral studies of the effects of solutes and pressure on water structure,” J. Chem. Phys. 55, 768–792 (1971).
[Crossref]

1967 (1)

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[Crossref]

Artlett, C. P.

C. P. Artlett and H. M. Pask, “Optical remote sensing of water temperature using raman spectroscopy,” Opt Express 23, 31844–31856 (2015).
[Crossref] [PubMed]

Burikov, S.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

Burikov, S. A.

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

Caputo, B.

D. A. Leonard and B. Caputo, “Raman remote sensing of the ocean mixed-layer depth,” Optical Engineering 22, 223288 (1983).
[Crossref]

D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[Crossref] [PubMed]

Chang, C. H.

C. H. Chang and L. A. Young, “Seawater temperature measurement from Raman spectra,” Tech. rep., N62269-73-C-0073, ARPA Order 2194 (1972).

Churina, I. V.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

Combes, D.

P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
[Crossref]

Dolenko, S. A.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

Dolenko, T.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

Dolenko, T. A.

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

Emery, Y.

Eriksson, L.

S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
[Crossref]

Fadeev, V.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

Fadeev, V. V.

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

Fry, E. S.

Hoge, F. E.

Hyung, G. W.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Kang, H.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Katz, J. W.

Kim, B. H.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Kim, J.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Lee, J.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Leonard, D. A.

D. A. Leonard and B. Caputo, “Raman remote sensing of the ocean mixed-layer depth,” Optical Engineering 22, 223288 (1983).
[Crossref]

D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[Crossref] [PubMed]

Liang, K.

H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

Lin, H.

H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

Lu, J.

H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

Oh, M. K.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Pask, H. M.

C. P. Artlett and H. M. Pask, “Optical remote sensing of water temperature using raman spectroscopy,” Opt Express 23, 31844–31856 (2015).
[Crossref] [PubMed]

Quan, X.

Rudolf, A.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean.”, Optical Engineering 53(5), 051407 (2014).
[Crossref]

A. Rudolf and T. Walther, “A Brillouin lidar for remote sensing of the temperature profile in the ocean: Towards the laboratory demonstration,” in “IEEE Oceans 2012,”, 1–6 (2012).

Sabirov, A.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

Schemel, L.

L. Schemel, “Simplified conversions between specific conductance and salinity units for use with data from monitoring stations,” IEP Newsletter 14, 17–18 (2001).

Sjostrom, M.

S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
[Crossref]

Sugonyaev, A. V.

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

Terpstra, P.

P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
[Crossref]

Velikotnyi, P. A.

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

Walrafen, G. E.

G. E. Walrafen, “Raman spectral studies of the effects of solutes and pressure on water structure,” J. Chem. Phys. 55, 768–792 (1971).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[Crossref]

Walther, T.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean.”, Optical Engineering 53(5), 051407 (2014).
[Crossref]

A. Rudolf and T. Walther, “A Brillouin lidar for remote sensing of the temperature profile in the ocean: Towards the laboratory demonstration,” in “IEEE Oceans 2012,”, 1–6 (2012).

Wang, X.

H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

Wold, S.

S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
[Crossref]

Young, L. A.

C. H. Chang and L. A. Young, “Seawater temperature measurement from Raman spectra,” Tech. rep., N62269-73-C-0073, ARPA Order 2194 (1972).

Yu, N. E.

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Zwick, A.

P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
[Crossref]

Appl Opt (1)

M. K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote raman spectroscopy,” Appl Opt 54, 2639–2646 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Chemometrics and intelligent laboratory systems (1)

S. Wold, M. Sjostrom, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics and intelligent laboratory systems 58, 109–130 (2001).
[Crossref]

EARSeL eProceedings (2)

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings 10, 159–165 (2011).

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser raman spectroscopy,” EARSeL eProceedings 3, 298–305 (2004).

IEP Newsletter (1)

L. Schemel, “Simplified conversions between specific conductance and salinity units for use with data from monitoring stations,” IEP Newsletter 14, 17–18 (2001).

J. Chem. Phys. (3)

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of solutes and pressure on water structure,” J. Chem. Phys. 55, 768–792 (1971).
[Crossref]

P. Terpstra, D. Combes, and A. Zwick, “Effect of salts on dynamics of water: A raman spectroscopy study,” J. Chem. Phys. 92, 65–70 (1990).
[Crossref]

Opt Express (1)

C. P. Artlett and H. M. Pask, “Optical remote sensing of water temperature using raman spectroscopy,” Opt Express 23, 31844–31856 (2015).
[Crossref] [PubMed]

Optical Engineering (2)

D. A. Leonard and B. Caputo, “Raman remote sensing of the ocean mixed-layer depth,” Optical Engineering 22, 223288 (1983).
[Crossref]

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean.”, Optical Engineering 53(5), 051407 (2014).
[Crossref]

Optics and Spectroscopy (1)

S. A. Burikov, T. A. Dolenko, P. A. Velikotnyi, A. V. Sugonyaev, and V. V. Fadeev, “The effect of hydration of ions of inorganic salts on the shape of the raman stretching band of water,” Optics and Spectroscopy 98, 235–239 (2005).
[Crossref]

Other (3)

C. H. Chang and L. A. Young, “Seawater temperature measurement from Raman spectra,” Tech. rep., N62269-73-C-0073, ARPA Order 2194 (1972).

H. Lin, X. Wang, K. Liang, and J. Lu, “Ocean red tide temperature and salinity monitoring technology based on Bril-louin scattering,” in “2011 International Conference on Electric Information and Control Engineering (ICEICE),” (2011), pp. 559–562.

A. Rudolf and T. Walther, “A Brillouin lidar for remote sensing of the temperature profile in the ocean: Towards the laboratory demonstration,” in “IEEE Oceans 2012,”, 1–6 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for collection of Raman spectra.
Fig. 2
Fig. 2 (top) Raman spectra with changing temperature and fixed salinity (15 PSU). (bottom) changing salinity and fixed temperature (25 °C).
Fig. 3
Fig. 3 Raman spectral analysis of an undiluted (32.4 PSU) Rose Bay water sample, showing RMS temperature error based on a ratio of two integrated spectral bands with 200 cm−1 widths. The axes represent the center position of each band.
Fig. 4
Fig. 4 Raman spectral analysis of a Rose Bay water sample at 25 °C, showing RMS salinity error based on a ratio of two integrated spectral bands with 200 cm−1 widths. The axes represent the center position of each band.
Fig. 5
Fig. 5 PLS-R (top) loadings and (bottom) scores plots representing the behavior of the unpolarized OH stretching band (2800–3800 cm−1). Each data point in the scores plot represents a Raman spectrum, and these are labeled with the temperature and salinity values in the following manner: “temperature-salinity”.
Fig. 6
Fig. 6 PLS-R (top) loadings and (bottom) scores plots representing the behavior of three spectral regions from the OH band with unpolarized detection. Each data point in the scores plot represents a Raman spectrum, and these are labeled with the temperature and salinity values in the following manner: “temperature-salinity”.
Fig. 7
Fig. 7 A three-channel Raman detection system for simultaneous collection of temperature and salinity data.

Tables (1)

Tables Icon

Table 1 Temperature, conductivity and calculated salinity

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T w o c o l o r r a t i o = a × T + b

Metrics