Abstract

With increasing interest over the past decade in space-related remote sensing and communications using near-infrared (NIR) wavelengths, there is a need for radiation studies on NIR avalanche photodiodes (APDs), due to the high radiation environment in space. In this work, we present an experimental study of proton radiation effects on performance parameters of InAs APDs, whose sensitivity extends from visible light to ~3.5 μm. Three irradiation energies (10.0, 31.4, and 58.8 MeV) and four fluences (109 to 1011 p/cm2) were used. At the harshest irradiation condition (10.0 MeV energy and 1011 p/cm2 fluence) the APDs’ avalanche gain and leakage current showed a measurable degradation. However, the responsivity of the APDs was unaffected under all conditions tested. The data reported in this article are available from the figshare digital repository (DOI: https://dx.doi.org/10.15131/shef.data.4560562).

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product

Shiyu Xie, Xinxin Zhou, Shiyong Zhang, David J. Thomson, Xia Chen, Graham T. Reed, Jo Shien Ng, and Chee Hing Tan
Opt. Express 24(21) 24242-24247 (2016)

Few-photon detection using InAs avalanche photodiodes

Chee Hing Tan, Anton Velichko, Leh Woon Lim, and Jo Shien Ng
Opt. Express 27(4) 5835-5842 (2019)

Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes

Lucas L.G. Pinel, Simon J. Dimler, Xinxin Zhou, Salman Abdullah, Shiyong Zhang, Chee Hing Tan, and Jo Shien Ng
Opt. Express 26(3) 3568-3576 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Chédin, “The feasibility of monitoring CO2 from high-resolution infrared sounders,” J. Geophys. Res. 108(D2), 4064 (2003).
    [Crossref]
  2. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42(33), 6569–6577 (2003).
    [Crossref] [PubMed]
  3. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
    [Crossref]
  4. D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
    [Crossref]
  5. J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
    [Crossref]
  6. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
    [Crossref]
  7. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).
  8. H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
    [Crossref]
  9. J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
    [Crossref]
  10. Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Express 21(14), 16946–16954 (2013).
    [Crossref] [PubMed]
  11. H. N. Becker and A. H. Johnston, “Dark current degradation of near infrared avalanche photodiodes from proton irradiation,” IEEE Trans. Nucl. Sci. 51(6), 3572–3578 (2004).
    [Crossref]
  12. M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
    [Crossref]
  13. G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
    [Crossref]
  14. C. Inguimbert and R. Gigante, “NEMO: A code to compute NIEL of protons, neutrons, electrons, and heavy ions,” IEEE Trans. Nucl. Sci. 53(4), 1967–1972 (2006).
    [Crossref]
  15. I. C. Sandall, J. S. Ng, S. Xie, P. J. Ker, and C. H. Tan, “Temperature dependence of impact ionization in InAs,” Opt. Express 21(7), 8630–8637 (2013).
    [Crossref] [PubMed]
  16. V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
    [Crossref]

2016 (1)

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

2014 (1)

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

2013 (2)

2011 (2)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

2008 (2)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

2006 (2)

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

C. Inguimbert and R. Gigante, “NEMO: A code to compute NIEL of protons, neutrons, electrons, and heavy ions,” IEEE Trans. Nucl. Sci. 53(4), 1967–1972 (2006).
[Crossref]

2005 (1)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

2004 (1)

H. N. Becker and A. H. Johnston, “Dark current degradation of near infrared avalanche photodiodes from proton irradiation,” IEEE Trans. Nucl. Sci. 51(6), 3572–3578 (2004).
[Crossref]

2003 (3)

H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
[Crossref]

A. Chédin, “The feasibility of monitoring CO2 from high-resolution infrared sounders,” J. Geophys. Res. 108(D2), 4064 (2003).
[Crossref]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42(33), 6569–6577 (2003).
[Crossref] [PubMed]

1993 (1)

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Abshire, J.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Amediek, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Beck, J.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Becker, H.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Becker, H. N.

H. N. Becker and A. H. Johnston, “Dark current degradation of near infrared avalanche photodiodes from proton irradiation,” IEEE Trans. Nucl. Sci. 51(6), 3572–3578 (2004).
[Crossref]

H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
[Crossref]

Bert, N. A.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Burke, E. A.

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Chaldyshev, V. V.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Chandrasekara, R.

Chédin, A.

A. Chédin, “The feasibility of monitoring CO2 from high-resolution infrared sounders,” J. Geophys. Res. 108(D2), 4064 (2003).
[Crossref]

Cheng, C.

Chevara, D.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

David, J. P. R.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

Dorn, M. L.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Ehret, G.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Fix, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Gigante, R.

C. Inguimbert and R. Gigante, “NEMO: A code to compute NIEL of protons, neutrons, electrons, and heavy ions,” IEEE Trans. Nucl. Sci. 53(4), 1967–1972 (2006).
[Crossref]

Goh, Y. L.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Hartman, S.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Hirao, T.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Inguimbert, C.

C. Inguimbert and R. Gigante, “NEMO: A code to compute NIEL of protons, neutrons, electrons, and heavy ions,” IEEE Trans. Nucl. Sci. 53(4), 1967–1972 (2006).
[Crossref]

Itoh, H.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Johnston, A.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Johnston, A. H.

H. N. Becker and A. H. Johnston, “Dark current degradation of near infrared avalanche photodiodes from proton irradiation,” IEEE Trans. Nucl. Sci. 51(6), 3572–3578 (2004).
[Crossref]

H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
[Crossref]

Ker, P. J.

I. C. Sandall, J. S. Ng, S. Xie, P. J. Ker, and C. H. Tan, “Temperature dependence of impact ionization in InAs,” Opt. Express 21(7), 8630–8637 (2013).
[Crossref] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Kolesnikova, A. L.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

Laird, J. S.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Ling, A.

Mainzer, A.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

McKelvey, M.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

McMurray, R.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

McMurtry, C.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Menzies, R. T.

Messenger, S. R.

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Mitra, P.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Miyahira, T. F.

H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
[Crossref]

Ng, J. S.

I. C. Sandall, J. S. Ng, S. Xie, P. J. Ker, and C. H. Tan, “Temperature dependence of impact ionization in InAs,” Opt. Express 21(7), 8630–8637 (2013).
[Crossref] [PubMed]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Ong, D. S. G.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Onoda, S.

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

Pipher, J. L.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Reiff, K.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Romanov, A. E.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Rosser, J.

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

Sandall, I. C.

Shapiro, P.

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

Summers, G. P.

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Sun, X.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Tan, C. H.

I. C. Sandall, J. S. Ng, S. Xie, P. J. Ker, and C. H. Tan, “Temperature dependence of impact ionization in InAs,” Opt. Express 21(7), 8630–8637 (2013).
[Crossref] [PubMed]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

Tan, Y. C.

Tratt, D. M.

Walters, R. J.

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

Welch, T.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Xie, S.

Zhang, S.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[Crossref]

IEEE Trans. Electron Dev. (1)

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

IEEE Trans. Nucl. Sci. (5)

H. N. Becker, T. F. Miyahira, and A. H. Johnston, “The influence of structural characteristics on the response of silicon avalanche photodiodes to proton irradiation,” IEEE Trans. Nucl. Sci. 50(6), 1974–1981 (2003).
[Crossref]

J. S. Laird, S. Onoda, T. Hirao, H. Becker, A. Johnston, and H. Itoh, “Effects of gamma and heavy ion damage on the impulse response and pulsed gain of a low breakdown voltage Si avalanche photodiode,” IEEE Trans. Nucl. Sci. 53(6), 3786–3793 (2006).
[Crossref]

H. N. Becker and A. H. Johnston, “Dark current degradation of near infrared avalanche photodiodes from proton irradiation,” IEEE Trans. Nucl. Sci. 51(6), 3572–3578 (2004).
[Crossref]

G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993).
[Crossref]

C. Inguimbert and R. Gigante, “NEMO: A code to compute NIEL of protons, neutrons, electrons, and heavy ions,” IEEE Trans. Nucl. Sci. 53(4), 1967–1972 (2006).
[Crossref]

J. Appl. Phys. (1)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

J. Astron. Telesc. Instrum. Syst. (1)

M. L. Dorn, J. L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, “Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera,” J. Astron. Telesc. Instrum. Syst. 2(3), 036002 (2016).
[Crossref]

J. Electron. Mater. (1)

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA Lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

J. Geophys. Res. (1)

A. Chédin, “The feasibility of monitoring CO2 from high-resolution infrared sounders,” J. Geophys. Res. 108(D2), 4064 (2003).
[Crossref]

Opt. Express (2)

Phys. Status Solidi (1)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs avalanche photodiodes for infrared sensing,” Phys. Status Solidi 9(c), 310–313 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Structure of the InAs APD wafer and (b) top view of mesa InAs APDs.
Fig. 2
Fig. 2 (a) Mean I-V with standard deviations, and (b) mean M(V) with standard deviations at 300 and 200 K of 200 μm diameter InAs APDs, prior to proton irradiation.
Fig. 3
Fig. 3 Mean I-V characteristics at 300 (top row) and 200 K (bottom row) of the 200 μm diameter APDs from the proton-irradiated dies, along with the corresponding reference data (with standard deviations). Proton energies were 10.0 (left), 31.4 (middle), and 58.8 (right) MeV.
Fig. 4
Fig. 4 (a) Id at −0.2 and −10 V versus fluence for all irradiated dies, and (b) ΔId at −0.2 and −10 V versus fluence for dies irradiated with 10.0 MeV protons. All data are for 200 μm diameter APDs at 200 K.
Fig. 5
Fig. 5 Responsivity at −0.2 V of the dies at (a) 300 and (b) 200 K, compared to the reference values (with standard deviations).
Fig. 6
Fig. 6 Avalanche gain versus reverse bias of all dies at (a) 300 and (b) 200 K, compared to the reference values (with standard deviations).
Fig. 7
Fig. 7 An InAs sample irradiated with the same condition as Die #4, showing (a) dislocation loops within the p-doped layer in a bright field TEM image, and (b) a Moiré fringe area (rectangle) and a dislocation loop (ellipse) in a HREM image.

Tables (2)

Tables Icon

Table 1 Proton irradiation conditions, NIEL values and irradiated die numbers. Deduced damage factors for 200 K leakage currents of 200 μm diameter APDs are also listed.

Tables Icon

Table 2 Number of APDs tested for each die prior to and after proton irradiation.

Metrics