Abstract

Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator

Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Kaoru Minoshima, Atsushi Onae, Masami Yasuda, Takuya Kohno, Sakae Kawato, Takao Kobayashi, Toshio Katsuyama, and Feng-Lei Hong
Opt. Express 18(2) 1667-1676 (2010)

Frequency comb assisted two-photon vibrational spectroscopy

Juho Karhu, Markku Vainio, Markus Metsälä, and Lauri Halonen
Opt. Express 25(5) 4688-4699 (2017)

Injection locking of Yb-fiber based optical frequency comb

Naoya Kuse, Akira Ozawa, Yutaka Nomura, Isao Ito, and Yohei Kobayashi
Opt. Express 20(10) 10509-10518 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
    [Crossref]
  2. W. Peng, L. Zhou, S. Long, J. Wang, and M. Zhan, “Locking laser frequency of up to 40 GHz offset to a reference with a 10 GHz electro-optic modulator,” Opt. Lett. 39(10), 2998–3001 (2014).
    [Crossref] [PubMed]
  3. D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
    [Crossref]
  4. A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79(5), 013104 (2009).
  5. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
    [Crossref] [PubMed]
  6. N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
    [Crossref]
  7. N. Scharnhorst, J. B. Wübbena, S. Hannig, K. Jakobsen, J. Kramer, I. D. Leroux, and P. O. Schmidt, “High-bandwidth transfer of phase stability through a fiber frequency comb,” Opt. Express 23(15), 19771–19776 (2015).
    [Crossref] [PubMed]
  8. T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  9. J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24(24), 1838–1840 (1999).
    [Crossref] [PubMed]
  10. F. Herzog, K. Kudielka, D. Erni, and W. Bächtold, “Optical phase locked loop for transparent inter-satellite communications,” Opt. Express 13(10), 3816–3821 (2005).
    [Crossref] [PubMed]
  11. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  12. Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
    [Crossref] [PubMed]
  13. A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
    [Crossref] [PubMed]
  14. T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
    [Crossref]
  15. Our power splitters were from Mini-circuit, model ZSCQ-2–90 and ZMSCQ-2–50 +
  16. Tektronix Inc. model: RSA3408A real time spectrum analyzer.
  17. M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).
  18. Y. H. Chen, T. W. Liu, C. M. Wu, C. C. Lee, C. K. Lee, and W. Y. Cheng, “High-resolution 133Cs 6S-6D, 6S-8S two-photon spectroscopy using an intracavity scheme,” Opt. Lett. 36(1), 76–78 (2011).
    [Crossref] [PubMed]
  19. M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10(5), 802–816 (1993).
    [Crossref]
  20. C.-M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, “Absolute frequency of cesium 6S-8S 822 nm two-photon transition by a high-resolution scheme,” Opt. Lett. 38(16), 3186–3189 (2013).
    [Crossref] [PubMed]
  21. A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
    [Crossref]
  22. T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
    [Crossref]
  23. Symmetricom 5071a cesium clock whose frequency was traced to UTC(TL) via the flying clock method and that resulted in 1.4 × 10−14 one-day accuracy and 10−11 for 10 second sampling time; UTC: Coordinated Universal Time; TL: Telecommunication laboratories of Taiwan.
  24. D. A. Steck, “Rubidium 87 D line Data,” revision 1.6, 14 October 2003, http://steck.us/alkalidata/
  25. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
    [Crossref]
  26. M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
    [Crossref]
  27. C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
    [Crossref]
  28. T. J. Quinn, “Practical realization of the definition of the metre, including recommend radiations of other optical frequency standards,” Metrologia 40(2), 103–133 (2003).
    [Crossref]
  29. U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
    [Crossref]
  30. Filter from K&L model 3TNF-30/76-N/N.
  31. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
    [Crossref] [PubMed]
  32. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
    [Crossref]
  33. C. Y. Ye and A. S. Zibro, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65(2), 023806 (2002).
    [Crossref]
  34. Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
    [Crossref] [PubMed]
  35. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969).
    [Crossref]
  36. C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, “Cesium 6S(1/2) → 8S(1/2) two-photon-transition-stabilized 822.5 nm diode laser,” Opt. Lett. 32(5), 563–565 (2007).
    [Crossref] [PubMed]
  37. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

2015 (1)

2014 (1)

2013 (1)

2012 (1)

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

2011 (2)

A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
[Crossref] [PubMed]

Y. H. Chen, T. W. Liu, C. M. Wu, C. C. Lee, C. K. Lee, and W. Y. Cheng, “High-resolution 133Cs 6S-6D, 6S-8S two-photon spectroscopy using an intracavity scheme,” Opt. Lett. 36(1), 76–78 (2011).
[Crossref] [PubMed]

2009 (2)

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
[Crossref]

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79(5), 013104 (2009).

2008 (1)

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (2)

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, “Cesium 6S(1/2) → 8S(1/2) two-photon-transition-stabilized 822.5 nm diode laser,” Opt. Lett. 32(5), 563–565 (2007).
[Crossref] [PubMed]

2006 (1)

A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
[Crossref]

2005 (4)

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

F. Herzog, K. Kudielka, D. Erni, and W. Bächtold, “Optical phase locked loop for transparent inter-satellite communications,” Opt. Express 13(10), 3816–3821 (2005).
[Crossref] [PubMed]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

2004 (1)

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

2003 (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommend radiations of other optical frequency standards,” Metrologia 40(2), 103–133 (2003).
[Crossref]

2002 (2)

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

C. Y. Ye and A. S. Zibro, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65(2), 023806 (2002).
[Crossref]

2001 (1)

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

2000 (1)

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

1999 (2)

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24(24), 1838–1840 (1999).
[Crossref] [PubMed]

1997 (1)

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

1995 (2)

M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (1)

T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
[Crossref]

1982 (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
[Crossref] [PubMed]

1969 (1)

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969).
[Crossref]

Acef, O.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Affolderbach, C.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Bächtold, W.

Barger, R. L.

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969).
[Crossref]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

Benson, O.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
[Crossref]

Beverini, N.

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

Birben, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Bragdon, T.

A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
[Crossref]

Byer, R.

T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
[Crossref]

Cacciapuoti, L.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Chen, Y. H.

Cheng, C.-Y.

Cheng, W. Y.

Cheng, W.-Y.

Clairon, A.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Day, T.

T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
[Crossref]

de Angelis, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

de Beauvoir, B.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

de Miranda, M. H. G.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

Diddams, S. A.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Erni, D.

Fattori, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Felder, R.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Fermann, M. E.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Foreman, S. M.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

Freegarde, T.

M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).

Fukuda, T.

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

Gill, P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Gustafson, E.

T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
[Crossref]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24(24), 1838–1840 (1999).
[Crossref] [PubMed]

M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10(5), 802–816 (1993).
[Crossref]

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969).
[Crossref]

Hannig, S.

Hansch, T. W.

M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).

Hartl, I.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Herzog, F.

Hilico, L.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Höckel, D.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
[Crossref]

Huang, K.

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

Jakobsen, K.

Jung, C.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Knappe, S.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Kortyna, A.

A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
[Crossref]

Kramer, J.

Kudielka, K.

Lamporesi, G.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Latrasse, C.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

Lee, C. C.

Lee, C. K.

Lee, R. K.

Leroux, I. D.

Li, Y.

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[Crossref] [PubMed]

Liao, G.-B.

Liu, T. W.

Long, S.

Lu, X.

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

Ludlow, A. D.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Margolis, H. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

Marino, A. M.

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79(5), 013104 (2009).

Martin, M. J.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Masluk, N. A.

A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
[Crossref]

Nagel, A.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Nez, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Nishimiya, N.

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

Nyushkov, B.

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

Ohtsuka, T.

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

Peng, W.

Petelski, T.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Poulin, M.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

Prevedelli, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommend radiations of other optical frequency standards,” Metrologia 40(2), 103–133 (2003).
[Crossref]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

Ruffini, A.

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

Scharnhorst, N.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Schmidt, P. O.

Scholz, M.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
[Crossref]

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Schwettmann, A.

A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
[Crossref] [PubMed]

Sedlacek, J.

A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
[Crossref] [PubMed]

Shaffer, J. P.

A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
[Crossref] [PubMed]

Shirley, J. H.

Sorrentino, F.

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

Stalnaker, J. E.

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

Stroud, C. R.

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79(5), 013104 (2009).

Stuhler, J.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Suzuki, M.

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

Tetu, M.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

Tino, G. M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

Touahri, D.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Wang, J.

Weidemuller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Wiedenmann, D.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Wu, C. M.

Wu, C.-M.

Wu, M. H.

Wübbena, J. B.

Wynands, R.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

Xiao, M.

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

Ye, C. Y.

C. Y. Ye and A. S. Zibro, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65(2), 023806 (2002).
[Crossref]

Ye, J.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24(24), 1838–1840 (1999).
[Crossref] [PubMed]

Yost, D. F. C.

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Zhan, M.

Zhang, X.

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

Zhou, L.

Zhu, M.

Zibro, A. S.

C. Y. Ye and A. S. Zibro, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65(2), 023806 (2002).
[Crossref]

Zielonkowski, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Zondy, J.-J.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

Appl. Phys. B (3)

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94(3), 429–435 (2009).
[Crossref]

M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase lock of grating-tuned diode lasers,” Appl. Phys. B 60, S241–S248 (1995).

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70(3), 407–413 (2000).
[Crossref]

IEEE J. Quantum Electron. (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

T. Day, E. Gustafson, and R. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot Interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, “Doppler-free two-photon spectroscopy of 6S1/2-6D3/2,5/2 transition in cesium,” J. Phys. Soc. Jpn. 74(9), 2487–2491 (2005).
[Crossref]

Metrologia (2)

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “Development and absolte frequency measurement of a pair of 778 nm two-photon rubidium standards,” Metrologia 42(5), 464–467 (2005).
[Crossref]

T. J. Quinn, “Practical realization of the definition of the metre, including recommend radiations of other optical frequency standards,” Metrologia 40(2), 103–133 (2003).
[Crossref]

Nat. Photonics (1)

T. R. Schibli, I. Hartl, D. F. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Opt. Commun. (2)

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Birben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)-5D5/2 (F=5) two-photon transition in rubidium,” Opt. Commun. 133(96), 471–478 (1997).
[Crossref]

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(2), 233–242 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (3)

C. Y. Ye and A. S. Zibro, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65(2), 023806 (2002).
[Crossref]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[Crossref] [PubMed]

A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d2DJ hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phys. Rev. A 74(2), 022503 (2006).
[Crossref]

Phys. Rev. Lett. (3)

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17.,” Phys. Rev. Lett. 99(15), 153601 (2007).
[Crossref] [PubMed]

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969).
[Crossref]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).

Quantum Electron. (1)

N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, and A. Ruffini, “An analog+digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electron. 34(6), 559–564 (2004).
[Crossref]

Rev. Sci. Instrum. (5)

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog+digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76(5), 053111 (2005).
[Crossref]

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79(5), 013104 (2009).

Z. Xu, X. Zhang, K. Huang, and X. Lu, “A digital optical phase-locked loop for diode lasers based on field programmable gate array,” Rev. Sci. Instrum. 83(9), 093104 (2012).
[Crossref] [PubMed]

A. Schwettmann, J. Sedlacek, and J. P. Shaffer, “Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82(10), 103103 (2011).
[Crossref] [PubMed]

U. Schünemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Other (5)

Filter from K&L model 3TNF-30/76-N/N.

Symmetricom 5071a cesium clock whose frequency was traced to UTC(TL) via the flying clock method and that resulted in 1.4 × 10−14 one-day accuracy and 10−11 for 10 second sampling time; UTC: Coordinated Universal Time; TL: Telecommunication laboratories of Taiwan.

D. A. Steck, “Rubidium 87 D line Data,” revision 1.6, 14 October 2003, http://steck.us/alkalidata/

Our power splitters were from Mini-circuit, model ZSCQ-2–90 and ZMSCQ-2–50 +

Tektronix Inc. model: RSA3408A real time spectrum analyzer.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Basic concept of “self-referenced” frequency-to-voltage converter. Vin: beatnote from two lasers. Vout: the error signal for feed-back controlling slave laser frequency. Right-bottom: simulation result of Vout against Vin; Δω: frequency difference between the two turning points ω+ and ω-. Dashed inset: band pass filter with R = 910 Ω, C = 20.6 pF, and L = 1 mH. We used a two-way 90° power splitter.
Fig. 2
Fig. 2 Demonstration of the step-by-step offset locking. (a): frequency jitter of beatnote; two lasers in freely running; RBW: resolution bandwidth; (b): BPS in Fig. 1 was employed; note that the beatnote was captured from 102 MHz in (a) all the way down to 85 MHz and was then frequency-stabilized; (c) the beatnote in (b) was further stabilized via MBS; resolution was limited by the RBW of our RF spectrum analyzer [16]; (d) Beatnote frequency instability; the precision was limited by the time base instability of counter. In normal situation, the error signals from BPS and MBS were summed up together for feeding back.
Fig. 3
Fig. 3 Experimental setup for showing the ultimate beatnote linewidth in our offset locking. BPS: band-pass system; LF: loop filter; LP: low-pass filter; Syn: synthesizer; bottom-left: part of the time-domain readout from mixer #1 where the solid-red fitting curve is a pure 10-Hz sinusoidal wave (2-ms averaging time for each data point). The total data acquisition time was actually 2.5 h; bottom-right: FFT spectrum transformed from the acquisitioned date stored in the hard disk. Inset is the log-scale power spectrum that extends the spectral range from 8 mHz to 1 MHz, from which one can deduce the phase noise [17,18].
Fig. 4
Fig. 4 The applications of our offset locking on two-photon spectra: different atoms with the relevant energy levels, respectively. Black solid lines are Lorentian fitting; (a) spectrum resolved by 884-nm intracavity slave laser; (500 kHz per frequency step). Δfbeat: beat frequency between the master and the slave laser illustrated in Fig. 3; (b) spectrum resolved by 778-nm intracavity slave laser which was offset locked to the second harmonic of a 1.5-μm fiber comb laser (50 kHz per frequency step); no EOM is needed in this case. Note that the cold finger temperature was room temperature (23°C), see text.
Fig. 5
Fig. 5 (a) Extended design for enlarging capture range and improving frequency stability compared to the design in Fig. 1(b) Simulated curve using the lowest-order notch filter shown in upper part; C1: 2.06 nF; L1: 10 nH; Zm and ZR: 50 Ω.
Fig. 6
Fig. 6 EIT signal resolved via the offset-lock scheme shown in Fig. 5, with the fitted curves in inset (right-upper). Right bottom: the relevant level diagram; Black scattered dots were recorded as probe laser was freely wondering around the 3 3 transition; Blue tri-angle data: probe laser was offset-locked to coupling laser where the offset frequency was tuned to 250 kHz/step, see text; probe power: 0.2 mW; coupling power: 6 mW.

Tables (2)

Tables Icon

Table 1 Cesium 6D3/2 hyperfine intervals derived from Fig. 4(a), Lorentzian fitting.

Tables Icon

Table 2 Error budget for determining the hyperfine constants A and B*

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V a V in = 1 2 Z 0 e i(ωt+ θ a )
V b V in = 1 2 e i(ωt+π/2)
V out =Re( Z 0 e j( θ a +π/2) )= 1 1+ α 2 cos( cos 1 ( 1 1+ α 2 )+ϕ),
ω + = 2 2RC + 1 2 R 2 C 2 + 1 LC
ω = 2 2RC + 1 2 R 2 C 2 + 1 LC
Δf= ω + ω SNR = 2 /RC SNR
H dipole =AIJ
H quadrupole =B 3 (IJ) 2 + 3 2 (IJ)I(I+1)J(J+1) 2I(2I1)J(2J1) .

Metrics