Abstract

A light-driven tristable chiral-tilted homeotropic nematic (TCHN) cell is demonstrated. The liquid-crystal cell is photo-switchable among the three stable states: the tilted-homeotropic, fingerprint, and the tilted-twist states. The inclusion of a photosensitive chiral bis(azobenzene) compound into a typical nematic liquid crystal makes the resulting material possible to switch from one to another stable state directly and reversibly owing to the photoinduced transcis isomerization of the azo-chiral dopant and, hence, the configurational change of the liquid crystal via the guest–host effect. By further introducing dichroic dyes into the TCHN system, we devised a polarizer-free display and light modulators. The novel TCHN composite material opens up new possible applications in light-driven optical elements and devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal

Kuan-Chung Huang, Yu-Cheng Hsiao, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Opt. Express 24(22) 25019-25025 (2016)

Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant

Jia-De Lin, Meng-Hung Hsieh, Guan-Jhong Wei, Ting-Shan Mo, Shuan-Yu Huang, and Chia-Rong Lee
Opt. Express 21(13) 15765-15776 (2013)

Photo- and electrical-responsive liquid crystal smart dimmer for augmented reality displays

Javed Rouf Talukder, Hung-Yuan Lin, and Shin-Tson Wu
Opt. Express 27(13) 18169-18179 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
    [Crossref]
  2. J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
    [Crossref]
  3. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  4. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  5. D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
    [Crossref]
  6. I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
    [Crossref]
  7. S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
    [Crossref]
  8. G. P. Bryan-Brown, C. V. Brown, J. C. Jones, E. L. Wood, I. C. Sage, P. Brett, and J. Rudin, “Grating aligned bistable nematic device,” SID Int. Symp. Digest Tech. Papers 28, 37–40 (1997).
  9. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
    [Crossref]
  10. X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
    [Crossref]
  11. C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
    [Crossref]
  12. A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
    [Crossref]
  13. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
    [Crossref] [PubMed]
  14. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
    [Crossref]
  15. D. L. White and G. N. Taylor, “New absorptive mode liquid-crystal display device,” Appl. Phys. Lett. 45, 4718–4720 (1974).
  16. Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
    [Crossref]
  17. C.-Y. Wu, Y.-H. Zou, I. Timofeev, Y.-T. Lin, V. Ya. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
    [Crossref] [PubMed]
  18. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  19. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref] [PubMed]
  20. C.-W. Chen, C.-C. Li, H.-C. Jau, C.-H. Lee, C. T. Wang, and T. H. Lin, “Bistable light-driven π phase switching using a twisted nematic liquid crystal film,” Opt. Express 22(10), 12133–12138 (2014).
    [Crossref] [PubMed]
  21. K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
    [Crossref] [PubMed]
  22. K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
    [Crossref]
  23. W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
    [Crossref]
  24. X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
    [Crossref]

2016 (2)

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
[Crossref] [PubMed]

2015 (1)

K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
[Crossref]

2014 (3)

C.-W. Chen, C.-C. Li, H.-C. Jau, C.-H. Lee, C. T. Wang, and T. H. Lin, “Bistable light-driven π phase switching using a twisted nematic liquid crystal film,” Opt. Express 22(10), 12133–12138 (2014).
[Crossref] [PubMed]

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
[Crossref]

2013 (2)

2011 (3)

2007 (1)

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

2006 (1)

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
[Crossref]

2004 (2)

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

2003 (1)

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

1997 (1)

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

1994 (1)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

1988 (1)

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

1981 (1)

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

1980 (1)

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

1974 (1)

D. L. White and G. N. Taylor, “New absorptive mode liquid-crystal display device,” Appl. Phys. Lett. 45, 4718–4720 (1974).

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

Chandani, A. D. L.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Chen, C.-W.

Chen, C.-Y.

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

Chen, S.-H.

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
[Crossref]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Cheung, H. L.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Cheung, Y. L.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Chigrinov, V.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Chigrinov, V. G.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Clark, N. A.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Dozov, I.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Durand, G.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Fukuda, A.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Hagiwara, T.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Hou, C.-T.

Hsiao, Y. C.

Hsiao, Y.-C.

Hsu, J.-S.

C.-Y. Wu, Y.-H. Zou, I. Timofeev, Y.-T. Lin, V. Ya. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref] [PubMed]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
[Crossref]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Huang, K. C.

Huang, K.-C.

K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
[Crossref]

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

Jau, H.-C.

Kim, J.-C.

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Kwok, H. S.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

Lagerwall, S. T.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

Lee, C. Y.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Lee, C.-H.

Lee, S.-H.

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Lee, W.

K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
[Crossref]

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
[Crossref]

Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
[Crossref] [PubMed]

C.-Y. Wu, Y.-H. Zou, I. Timofeev, Y.-T. Lin, V. Ya. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express 19(8), 7349–7355 (2011).
[Crossref] [PubMed]

Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
[Crossref] [PubMed]

Lee, Y.-H.

K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
[Crossref]

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

Li, C.-C.

Li, X. H.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Liang, B.-J.

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
[Crossref]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Lin, T. H.

Lin, T.-H.

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
[Crossref]

Lin, Y.-T.

Murauski, A.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Muravsky, A.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Nobili, M.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Ouchi, Y.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Park, K.-H.

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Srivastava, A.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Sun, J.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Suzuki, Y. I.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Takezoe, H.

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Tang, C.-Y.

Tang, S. T.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Taylor, G. N.

D. L. White and G. N. Taylor, “New absorptive mode liquid-crystal display device,” Appl. Phys. Lett. 45, 4718–4720 (1974).

Timofeev, I.

Timofeev, I. V.

Tseng, M. C.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Wang, C. T.

Wang, C.-T.

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
[Crossref]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

White, D. L.

D. L. White and G. N. Taylor, “New absorptive mode liquid-crystal display device,” Appl. Phys. Lett. 45, 4718–4720 (1974).

Wu, C.-Y.

Wu, Y.-C.

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
[Crossref]

Xu, P. Z.

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Yang, D.-K.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Yoon, T.-H.

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Yu, X. J.

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Zhang, W.

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Zou, Y.-H.

Zyryanov, V. Y.

Zyryanov, V. Ya.

Appl. Phys. Lett. (8)

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Dynamic behaviors of dual frequency liquid crystals in bistable chiral tilted-homeotropic nematic liquid crystal cell,” Appl. Phys. Lett. 89(5), 051920 (2006).
[Crossref]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85(17), 3711–3713 (2004).
[Crossref]

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

D. L. White and G. N. Taylor, “New absorptive mode liquid-crystal display device,” Appl. Phys. Lett. 45, 4718–4720 (1974).

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

S.-H. Lee, K.-H. Park, T.-H. Yoon, and J.-C. Kim, “Bistable chiral-splay nematic liquid crystal device using horizontal switching,” Appl. Phys. Lett. 82(24), 4215–4217 (2003).
[Crossref]

Dyes Pigm. (1)

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigm. 103, 21–24 (2014).
[Crossref]

J. Appl. Phys. (2)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

J. Disp. Technol. (2)

X. H. Li, A. Murauski, A. Muravsky, P. Z. Xu, H. L. Cheung, and V. G. Chigrinov, “Grayscale generation and stabilization in ferroelectric liquid crystal display,” J. Disp. Technol. 3(3), 273–279 (2007).
[Crossref]

Y.-H. Lee, K.-C. Huang, W. Lee, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” J. Disp. Technol. 10(12), 1106–1109 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. D. L. Chandani, T. Hagiwara, Y. I. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(2), L729–L732 (1988).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

K.-C. Huang, Y.-H. Lee, and W. Lee, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 617(1), 100–106 (2015).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

SID Digest (1)

W. Zhang, M. C. Tseng, C. Y. Lee, J. Sun, S. T. Tang, Y. L. Cheung, A. Srivastava, V. Chigrinov, and H. S. Kwok, “Polarization-controllable light-printer for optically rewritable (ORW) liquid crystal displays,” SID Digest 47(1), 1421–1423 (2016).
[Crossref]

Other (1)

G. P. Bryan-Brown, C. V. Brown, J. C. Jones, E. L. Wood, I. C. Sage, P. Brett, and J. Rudin, “Grating aligned bistable nematic device,” SID Int. Symp. Digest Tech. Papers 28, 37–40 (1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Photo-switching mechanisms and configurations of TCHN molecules in the tilted-twist (tT), fingerprint (FP), and tilted-homeotropic (tH) states.
Fig. 2
Fig. 2 A dye-doped TCHN sample atop a piece of paper with the letters NCTU printed on it. No modification with any photographic or image processing software is applied to the photographs of the TCHN in three different stable states.
Fig. 3
Fig. 3 Optical textures in three stable states observed under a POM equipped with crossed polarizers. The arrows to the right indicate the transmission axes of the polarizer (P) and analyzer (A) as well as the rubbing direction (R).
Fig. 4
Fig. 4 Transmission spectra of TCHN in the (a) tT-to-FP and (b) FP-to-tH state transitions under various UV exposure conditions. Each legend indicates the corresponding UV power per unit area in cm2 for a 6-s duration of irradiation to ensure the measurement in the steady state.
Fig. 5
Fig. 5 (a) Contrast ratio of the TCHN device deduced from the transmittance ratio of tH to FP with data retrieved from Fig. 4(b) and 4(b) the reflective contrast ratios of tH to tT and tH to FP at 632.8 nm varying with the applied voltage across a supplementary planar-alignment E7 cell of 5.5 μm in thickness as a phase retarder.

Metrics