Abstract

We propose and demonstrate a novel two-mode grating assisted contra-directional coupler (TGACC), which is capable of filtering two modes channels simultaneously by superposed grating with two superposed grating components. Finite-difference time-domain simulation is employed to study the structure. The influences of main structural parameters are analyzed, and apodization is employed to reduce the band sidelobes, crosstalk and back-reflections. We experimentally present a mode-channel switchable TGACC for 2.54nm-wide wavelength band centered at 1548.0nm by 50K thermal-optic tuning. With two channels combined into one device, the TGACC can help to enrich the functionality and reduce the footprint of mode-division multiplexing (MDM) systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip silicon mode blocking filter employing subwavelength-grating based contra-directional coupler

Yu He, Yong Zhang, Hongwei Wang, and Yikai Su
Opt. Express 26(25) 33005-33012 (2018)

Silicon mode multi/demultiplexer based on multimode grating-assisted couplers

Huiye Qiu, Hui Yu, Ting Hu, Guomin Jiang, Haifeng Shao, Ping Yu, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 21(15) 17904-17911 (2013)

Two-period contra-directional grating assisted coupler

M. T. Boroojerdi, M. Ménard, and A. G. Kirk
Opt. Express 24(20) 22865-22874 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  2. D. X. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
    [Crossref]
  3. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  4. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [Crossref] [PubMed]
  5. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  6. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  7. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  8. J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [Crossref]
  9. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-modemulti/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  10. J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39(24), 6993–6996 (2014).
    [Crossref] [PubMed]
  11. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref] [PubMed]
  12. X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics,” Opt. Lett. 40(16), 3893–3896 (2015).
    [Crossref] [PubMed]
  13. C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41(14), 3257–3260 (2016).
    [Crossref] [PubMed]
  14. Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24(18), 20542–20553 (2016).
    [Crossref] [PubMed]
  15. J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
    [Crossref] [PubMed]
  16. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
    [Crossref] [PubMed]
  17. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]
  18. H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40(9), 1885–1887 (2015).
    [Crossref] [PubMed]
  19. G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
    [Crossref] [PubMed]
  20. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  21. Lumerical Solutions Inc, “FDTD and MODE solutions,” https://www.lumerical.com/ .
  22. Lumerical Solutions Inc, “Lumerical 2.5D FDTD Propagation Method,” https://www.lumerical.com/support/whitepaper/2.5d_fdtd_propagation_method.html .
  23. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
    [Crossref] [PubMed]
  24. M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Two-period contra-directional grating assisted coupler,” Opt. Express 24(20), 22865–22874 (2016).
    [Crossref] [PubMed]
  25. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]

2016 (3)

2015 (6)

2014 (4)

2013 (4)

2012 (2)

2011 (1)

2008 (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1982 (1)

Ang, L. K.

Bahrami, H.

Berdagué, S.

Bergman, K.

Boeck, R.

Bolle, C. A.

Boroojerdi, M. T.

Bowers, J. E.

D. X. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Caverley, M.

Chee, A. K. L.

Chen, C. P.

Chen, G.

Chen, G. F. R.

Chen, S.

Chrostowski, L.

Da Ros, F.

Dadap, J. I.

Dai, D.

Dai, D. X.

D. X. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

Ding, Y.

Dorin, B. A.

Driscoll, J. B.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Essiambre, R.-J.

Facq, P.

Fard, S. T.

Flueckiger, J.

Frandsen, L. H.

Gnauck, A. H.

Greenberg, M.

Grote, R. R.

Guan, X.

Hu, T.

Huang, B.

Huang, Q.

Huang, Y.

Ishizaka, Y.

Jaeger, N. A. F.

Jean, P.

Jiang, G.

Jiang, X.

Jie, K.

Kawaguchi, Y.

Kirk, A. G.

Koshiba, M.

LaRochelle, S.

Lin, C.

Lingle, R.

Liu, Q.

Love, J. D.

Lu, M.

McCurdy, A.

Ménard, M.

Ooi, K. J. A.

Osgood, R. M.

Ou, H.

Peckham, D. W.

Peucheret, C.

Qiu, H.

Randel, S.

Riesen, N.

Ryf, R.

Saitoh, K.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Shao, H.

Shi, W.

Shi, Y.

Sierra, A.

Souhan, B.

Stein, A.

St-Yves, J.

Su, Y.

Sun, C.

Tan, D. T. H.

Uematsu, T.

Wang, J.

Wang, T.

Wang, X.

Wang, Y.

Winzer, P. J.

Xia, J.

Xu, J.

Yang, J.

Ye, W. N.

Yu, H.

Yu, P.

Yu, Y.

Yun, H.

Zhang, X.

Appl. Opt. (1)

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

J. Lightwave Technol. (3)

Nanophotonics (1)

D. X. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283–311 (2014).
[Crossref]

Opt. Express (11)

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
[Crossref] [PubMed]

Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24(18), 20542–20553 (2016).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Two-period contra-directional grating assisted coupler,” Opt. Express 24(20), 22865–22874 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (2)

Lumerical Solutions Inc, “FDTD and MODE solutions,” https://www.lumerical.com/ .

Lumerical Solutions Inc, “Lumerical 2.5D FDTD Propagation Method,” https://www.lumerical.com/support/whitepaper/2.5d_fdtd_propagation_method.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic configuration of the proposed TGACC. (a) Top view the structure, and (b) superposed grating profile (blue) composed of two grating components (red and green), when t1 = t2. (c) Superposed grating profile (blue) composed of two grating components (red and green), when t1 = t2.
Fig. 2
Fig. 2 (a) The Ey field distributions of two 0th modes TE01, TE02 and two 1st order mode TE11, TE12. (b) Calculated propagation constants of the modes with the phase-match condition. The mode coupling of TE01 to TE02 and TE11 to TE12 are highlighted by solid lines. The crosstalk coupling of TE01 to TE12 and TE11 to TE02 are represented by dashed lines. The self-reflection of TE01 to TE01 and TE11 to TE11, and the reflection coupling between TE01 and TE11 are represented by dot-dashed lines.
Fig. 3
Fig. 3 3D-FDTD simulations of the TGACC for (a) TE01 to TE02 and (b) TE11 to TE12 around the wavelength of 1550nm. TE01 and TE11 mode source are injected from waveguide 1 respectively. The waveguides are outlined by the black lines.
Fig. 4
Fig. 4 The through-port, drop-port, and crosstalk spectral responses of (a) 0th modes channel (TE01 to TE02) and (b) 1st modes channel (TE11 to TE12). The self-reflection and reflection coupling of (c) TE01 and (b) TE11.
Fig. 5
Fig. 5 The central wavelength of (a) 0th modes channel and (b) 1st modes channel; the 3dB bandwidth of (c) 0th modes channel and (d) 1st modes channel. All are as a function of Δt at different value of G.
Fig. 6
Fig. 6 (a) Gaussian apodization profile of corrugation amplitude with different apodization coefficients. The drop-port spectral responses of the uniform and apodized TGACCs for (b) 0th modes channel and (c) 1st modes channel. The spectra are shifted horizontally to be clearly shown.
Fig. 7
Fig. 7 The crosstalk (a) and (b), self-reflection (c) and (d), and reflection coupling (e) and (f) of uniform and apodized TGACCs for 0th modes channel and 1st modes channel respectively. The 3dB band range of each channel for the TGACCs are shown by dashed vertical line of corresponding color.
Fig. 8
Fig. 8 (a) The layout of TGACC used for fabrication. The SEM images of the TGACCs are shown by insets. The schematic configuration of the ADC multiplexers with design parameters for (b) 700nm wide multimode waveguide and (b) 900nm wide multimode waveguide.
Fig. 9
Fig. 9 Layout of reference structures used in the measurement.
Fig. 10
Fig. 10 (a) The through-port (dashed lines), drop-port (solid lines), and crosstalk (dotted lines) normalized spectral responses of the fabricated TGACCs at room temperature (ΔT = 0K). (b) The drop port normalized responses at ΔT = 50K. Shadowed region shows the overlapped 3dB band of 1st modes channel at ΔT = 0K and 0th modes channel at ΔT = 50K.

Tables (1)

Tables Icon

Table 1 Experiment properties of 0th and 1st modes channel in the fabricated TGACC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( x ) = t 1 sin ( K 1 x ) Π 1 ( x ) + t 2 sin ( K 2 x ) Π 2 ( x ) w h e r e Π i ( x ) = { 1 x [ 0 , N i Λ i ] 0 x [ 0 , N i Λ i ]
β j m + β k n = K i
t i ( x ) = t 0 i exp [ 1 2 ( x L / 2 σ L / 2 ) 2 ] 0 x L

Metrics