Abstract

Synchronously pumped optical parametric oscillator (OPO) at degeneracy is ideal for generating ultrafast laser pulses. Normally, however, group velocity mismatch (GVM) is ubiquitous among the interacting pulses at widely separated wavelengths. A versatile quasi-phase-matching (QPM) technique is proposed for temporal synchronizing of the signal and idler pulses relied on a less common Type-II QPM (oe-o interaction). The proposed group-velocity regulation technology is advantageous to constructing a degeneracy-analogous femtosecond OPO for dual-wavelength operation. Qualitative prediction for the proposed design is conducted based on a commercial femtosecond pump source at 1064 nm while the signal/idler wavelengths are 3.2 μm and 1.59 μm respectively. Compared with the conventional Type-0 QPM based counterpart (ee-e interaction), the uncompensated temporal distortion caused by temporal walk-off is strongly suppressed while the idler spectrum gets significantly broader. The versatility of the proposed scheme is also clearly demonstrated by its fairly stable performance within a broad tuning range of 2.9-3.5 μm and 1.68-1.53 μm. The demonstrated configuration might be promising for synchronously obtaining dual-wavelength ultrafast pulses with higher spectral and temporal qualities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator

Yuwei Jin, S. M. Cristescu, Frans J. M. Harren, and Julien Mandon
Opt. Express 23(16) 20418-20427 (2015)

Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate

Kent C. Burr, C. L. Tang, Mark A. Arbore, and Martin M. Fejer
Opt. Lett. 22(19) 1458-1460 (1997)

Broadband tuning of ring-type cavity-dumped femtosecond optical parametric oscillator in the near-infrared

Ji-Eon Park, Tae-Young Jeong, Young-Dahl Jho, Geon-Hee Kim, and Ki-Ju Yee
Opt. Express 27(11) 15891-15897 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
    [Crossref] [PubMed]
  2. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
    [Crossref]
  3. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
    [Crossref] [PubMed]
  4. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
    [Crossref]
  5. Z. Zhang and T. Yagi, “Dual-wavelength synchronous operation of a mode-locked Ti:sapphire laser based on self-spectrum splitting,” Opt. Lett. 18(24), 2126–2128 (1993).
    [Crossref] [PubMed]
  6. A. Leitenstorfer, C. Fürst, and A. Laubereau, “Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett. 20(8), 916–918 (1995).
    [Crossref] [PubMed]
  7. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [PubMed]
  8. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  9. Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
    [Crossref]
  10. P. Rigaud, V. Kermene, Ch. Simos, A. Desfarges-Berthelemot, G. Bouwmans, L. Bigot, A. Hideur, and A. Barthelemy, “Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain,” Opt. Express 23(19), 25308–25315 (2015).
    [Crossref] [PubMed]
  11. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]
  12. Q. Zhang, L. He, P. Lan, and P. Lu, “Shaped multi-cycle two-color laser field for generating an intense isolated XUV pulse toward 100 attoseconds,” Opt. Express 22(11), 13213–13233 (2014).
    [Crossref] [PubMed]
  13. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
    [Crossref] [PubMed]
  14. S. A. Rezvani, Q. Zhang, Z. Hong, and P. Lu, “Tunable broadband intense IR pulse generation at non-degenerate wavelengths using group delay compensation in a dual-crystal OPA scheme,” Opt. Express 24(10), 11187–11198 (2016).
    [Crossref] [PubMed]
  15. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [Crossref]
  16. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).
    [Crossref] [PubMed]
  17. L. Xu, X. Zhong, J. Zhu, H. Han, and Z. Wei, “Efficient femtosecond optical parametric oscillator with dual-wavelength operation,” Opt. Lett. 37(9), 1436–1438 (2012).
    [Crossref] [PubMed]
  18. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
    [Crossref]
  19. I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
    [Crossref]
  20. K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
    [Crossref]
  21. C. Gu, M. Hu, J. Fan, Y. Song, B. Liu, and C. Wang, “High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser,” Opt. Lett. 39(13), 3896–3899 (2014).
    [Crossref] [PubMed]
  22. Y. Jin, S. M. Cristescu, F. J. Harren, and J. Mandon, “Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator,” Opt. Express 23(16), 20418–20427 (2015).
    [Crossref] [PubMed]
  23. A. Esteban-Martin, V. Ramaiah-Badarla, and M. Ebrahim-Zadeh, “Dual-wavelength optical parametric oscillator using antiresonant ring interferometer,” Laser Photonics Rev. 6(5), L7–L11 (2012).
    [Crossref]
  24. S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, “Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power,” Opt. Express 16(24), 19812–19820 (2008).
    [Crossref] [PubMed]
  25. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
    [Crossref] [PubMed]
  26. J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, “Ultra-broad bandwidth parametric amplification at degeneracy,” Opt. Express 13(19), 7386–7392 (2005).
    [Crossref] [PubMed]
  27. A. M. Siddiqui, G. Cirmi, D. Brida, F. X. Kärtner, and G. Cerullo, “Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy,” Opt. Lett. 34(22), 3592–3594 (2009).
    [Crossref] [PubMed]
  28. H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
    [Crossref] [PubMed]
  29. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]
  30. K. Moutzouris, G. Hloupis, I. Stavrakas, D. Triantis, and M. H. Chou, “Temperature-dependent visible to near-infrared optical properties of 8 mol% MgO-doped lithium tantalate,” Opt. Mater. Express 1(3), 458–465 (2011).
    [Crossref]
  31. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  32. R. Laenen, H. Graener, and A. Laubereau, “Broadly tunable femtosecond pulses generated by optical parametric oscillation,” Opt. Lett. 15(17), 971–973 (1990).
    [Crossref] [PubMed]
  33. W. Tian, Z. Wang, X. Meng, N. Zhang, J. Zhu, and Z. Wei, “High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator,” Opt. Lett. 41(21), 4851–4854 (2016).
    [Crossref] [PubMed]
  34. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23(3), 159–161 (1998).
    [Crossref] [PubMed]
  35. C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, “Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media,” Opt. Express 24(14), 15940–15953 (2016).
    [Crossref] [PubMed]

2016 (4)

2015 (4)

2014 (2)

2013 (2)

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

2012 (3)

2011 (2)

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
[Crossref]

K. Moutzouris, G. Hloupis, I. Stavrakas, D. Triantis, and M. H. Chou, “Temperature-dependent visible to near-infrared optical properties of 8 mol% MgO-doped lithium tantalate,” Opt. Mater. Express 1(3), 458–465 (2011).
[Crossref]

2010 (2)

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

2006 (1)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

2005 (1)

2003 (2)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

2000 (1)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

1998 (1)

1995 (1)

1993 (1)

1990 (1)

Aguergaray, C.

Ališauskas, S.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Babushkin, I.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Baltuška, A.

Barthelemy, A.

Bergé, L.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Bigot, L.

Bisson, S. E.

Borguet, E.

Bouwmans, G.

Breunig, I.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
[Crossref]

Brida, D.

Buse, K.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
[Crossref]

Cerullo, G.

Chen, Z.

Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
[Crossref]

Chou, M. H.

Cirmi, G.

Cormier, E.

Cristescu, S. M.

Cui, Y.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Descamps, D.

Desfarges-Berthelemot, A.

Dutta, N. K.

Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
[Crossref]

Ebrahim-Zadeh, M.

A. Esteban-Martin, V. Ramaiah-Badarla, and M. Ebrahim-Zadeh, “Dual-wavelength optical parametric oscillator using antiresonant ring interferometer,” Laser Photonics Rev. 6(5), L7–L11 (2012).
[Crossref]

Elsaesser, T.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Esteban-Martin, A.

A. Esteban-Martin, V. Ramaiah-Badarla, and M. Ebrahim-Zadeh, “Dual-wavelength optical parametric oscillator using antiresonant ring interferometer,” Laser Photonics Rev. 6(5), L7–L11 (2012).
[Crossref]

Fan, D.

H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
[Crossref] [PubMed]

Fan, J.

Fedotov, A. B.

Fürst, C.

Gallmann, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gord, J. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Gottschall, T.

Graener, H.

Gu, C.

Hädrich, S.

Haertle, D.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
[Crossref]

Han, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Han, H.

Harren, F. J.

He, L.

Herrmann, J.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Hideur, A.

Hloupis, G.

Hong, Z.

Hu, M.

Isaienko, O.

Ishii, N.

Itatani, J.

Jiang, M. H.

Jin, Y.

Kanai, T.

Kaneshima, K.

Kärtner, F. X.

Kattawar, G. W.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Keller, U.

Kermene, V.

Kitano, K.

Köhler, C.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Kong, L. C.

Kuehn, W.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Kulp, T. J.

Laenen, R.

Lan, P.

Q. Zhang, L. He, P. Lan, and P. Lu, “Shaped multi-cycle two-color laser field for generating an intense isolated XUV pulse toward 100 attoseconds,” Opt. Express 22(11), 13213–13233 (2014).
[Crossref] [PubMed]

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Laubereau, A.

Leitenstorfer, A.

Li, Y.

H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
[Crossref] [PubMed]

Li, Z. Y.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Limpert, J.

Liu, B.

Liu, X.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Lu, P.

Lucht, R. P.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Luo, H.

Ma, S. Z.

Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
[Crossref]

Mandon, J.

Manek-Hönninger, I.

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Mayer, B. W.

Meng, X.

Meshchankin, D. V.

Meyer, T. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Midorikawa, K.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Mitrofanov, A. V.

Mitryukovsky, S. I.

Montant, S.

Moutzouris, K.

Mücke, O. D.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Nabekawa, Y.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Opatrny, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Panchenko, V. Y.

Petit, S.

Phillips, C. R.

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Powers, P. E.

Pugžlys, A.

Qian, L. J.

Qin, Z. P.

Ramaiah-Badarla, V.

A. Esteban-Martin, V. Ramaiah-Badarla, and M. Ebrahim-Zadeh, “Dual-wavelength optical parametric oscillator using antiresonant ring interferometer,” Laser Photonics Rev. 6(5), L7–L11 (2012).
[Crossref]

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Reimann, K.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Rezvani, S. A.

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Rigaud, P.

Röser, F.

Rothhardt, J.

Roy, S.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Salin, F.

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Scully, M. O.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Serebryannikov, E. E.

Shumakova, V.

Siddiqui, A. M.

Sidorov-Biryukov, D. A.

Simos, Ch.

Skupin, S.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Sokolov, A. V.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Song, Y.

Spörlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Stavrakas, I.

Sun, H. Z.

Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
[Crossref]

Sun, Z.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Takahashi, E. J.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Tang, D. Y.

Tao, X. T.

Tian, W.

Triantis, D.

Tünnermann, A.

Voronin, A. A.

Wang, C.

Wang, F.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Wang, J. Y.

Wang, P.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Wang, Z.

W. Tian, Z. Wang, X. Meng, N. Zhang, J. Zhu, and Z. Wei, “High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator,” Opt. Lett. 41(21), 4851–4854 (2016).
[Crossref] [PubMed]

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Watanabe, S.

Wei, Z.

Woerner, M.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Xie, G. Q.

Xu, D. G.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Xu, J.

Xu, L.

Xu, X. D.

Yagi, T.

Yao, J. Q.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Yu, H. H.

Yuan, P.

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Zhang, H. J.

Zhang, H. Y.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Zhang, L.

H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
[Crossref] [PubMed]

Zhang, N.

Zhang, Q.

Zhang, Z.

Zheltikov, A. M.

Zhong, H.

H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
[Crossref] [PubMed]

Zhong, K.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Zhong, X.

Zhu, J.

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Zubairy, M. S.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Appl. Phys. B (3)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105(1), 99–111 (2011).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (1)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked Erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photonics Technol. Lett. 20(24), 2066–2068 (2008).
[Crossref]

Laser Photonics Rev. (1)

A. Esteban-Martin, V. Ramaiah-Badarla, and M. Ebrahim-Zadeh, “Dual-wavelength optical parametric oscillator using antiresonant ring interferometer,” Laser Photonics Rev. 6(5), L7–L11 (2012).
[Crossref]

Nat. Commun. (1)

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).
[Crossref] [PubMed]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Opt. Express (8)

Q. Zhang, L. He, P. Lan, and P. Lu, “Shaped multi-cycle two-color laser field for generating an intense isolated XUV pulse toward 100 attoseconds,” Opt. Express 22(11), 13213–13233 (2014).
[Crossref] [PubMed]

S. A. Rezvani, Q. Zhang, Z. Hong, and P. Lu, “Tunable broadband intense IR pulse generation at non-degenerate wavelengths using group delay compensation in a dual-crystal OPA scheme,” Opt. Express 24(10), 11187–11198 (2016).
[Crossref] [PubMed]

P. Rigaud, V. Kermene, Ch. Simos, A. Desfarges-Berthelemot, G. Bouwmans, L. Bigot, A. Hideur, and A. Barthelemy, “Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain,” Opt. Express 23(19), 25308–25315 (2015).
[Crossref] [PubMed]

C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, “Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media,” Opt. Express 24(14), 15940–15953 (2016).
[Crossref] [PubMed]

S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, “Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power,” Opt. Express 16(24), 19812–19820 (2008).
[Crossref] [PubMed]

J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, “Ultra-broad bandwidth parametric amplification at degeneracy,” Opt. Express 13(19), 7386–7392 (2005).
[Crossref] [PubMed]

O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).
[Crossref] [PubMed]

Y. Jin, S. M. Cristescu, F. J. Harren, and J. Mandon, “Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator,” Opt. Express 23(16), 20418–20427 (2015).
[Crossref] [PubMed]

Opt. Lett. (11)

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

L. Xu, X. Zhong, J. Zhu, H. Han, and Z. Wei, “Efficient femtosecond optical parametric oscillator with dual-wavelength operation,” Opt. Lett. 37(9), 1436–1438 (2012).
[Crossref] [PubMed]

A. M. Siddiqui, G. Cirmi, D. Brida, F. X. Kärtner, and G. Cerullo, “Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy,” Opt. Lett. 34(22), 3592–3594 (2009).
[Crossref] [PubMed]

N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
[Crossref] [PubMed]

R. Laenen, H. Graener, and A. Laubereau, “Broadly tunable femtosecond pulses generated by optical parametric oscillation,” Opt. Lett. 15(17), 971–973 (1990).
[Crossref] [PubMed]

W. Tian, Z. Wang, X. Meng, N. Zhang, J. Zhu, and Z. Wei, “High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator,” Opt. Lett. 41(21), 4851–4854 (2016).
[Crossref] [PubMed]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23(3), 159–161 (1998).
[Crossref] [PubMed]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Z. Zhang and T. Yagi, “Dual-wavelength synchronous operation of a mode-locked Ti:sapphire laser based on self-spectrum splitting,” Opt. Lett. 18(24), 2126–2128 (1993).
[Crossref] [PubMed]

A. Leitenstorfer, C. Fürst, and A. Laubereau, “Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett. 20(8), 916–918 (1995).
[Crossref] [PubMed]

C. Gu, M. Hu, J. Fan, Y. Song, B. Liu, and C. Wang, “High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser,” Opt. Lett. 39(13), 3896–3899 (2014).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105(5), 053903 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Sci. Rep. (2)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Sci. Rep. 5, 10887 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Group velocity mismatch plays a critical role on the parametric interactions. (a) Normally, GVM is ubiquitous among the interacting pulses and subsequent temporal walk-off limits the interaction length and PM bandwidth. (b) The degeneracy-analogous situation when signal and idler pluses are perfectly group-velocity matched.
Fig. 2
Fig. 2 (a) Temperature-depended signal-idler wavelength-pairs for various pump sources in the degeneracy-analogous situation. o and e indicate the o- and e-polarization respectively. (b) and (c) The theoretical tuning curves for correlated signal (blue) and idler pulses (red) with identical group velocities, when the pump wavelengths are (b) 1064 nm and (c) 790 nm, respectively. All the data were calculated based on the published temperature-dependent Sellmeier equations of 8% doped MgO:PPLN [30].
Fig. 3
Fig. 3 Schematic of the singly resonant SPOPO with a basic ring-cavity. M1 is a dielectric mirror for in-coupling; M2 and M3 represent the out-coupler and high-reflective mirror respectively. The cavity length is matched to the repetition rate of pump laser.
Fig. 4
Fig. 4 The simulated dependence of quantum efficiency and spectral bandwidth versus pump intensities, for both of the degeneracy-analogous (a) and the common Tpye-0 QPM based (b) configurations, while the initial pump duration is 100 fs.
Fig. 5
Fig. 5 The simulated temporal envelopes outputs of the dual-wavelength SPOPO under a similarly moderate conversion efficiency of 30%, for both of the degeneracy-analogous (a) and the common Tpye-0 QPM based (b) configurations. Inset: The corresponding spectra and spectral phases. As shown, in means of the center wavelength, the spectral bandwidth in full width at half-maximum (FWHM) for signal/idler waves are 380 nm/90 nm (a) and 285 nm/50 nm (b), respectively.
Fig. 6
Fig. 6 The variation of spectral bandwidth with pump durations for both signal and idler pluses, for the degeneracy-analogous (a) and the common Tpye-0 QPM based (b) configurations. Spectral bandwidth of the initial pump pulses is also indicated with dashed lines. The spectrum data were all extracted at a similar conversion efficiency of 30%. (c) - (f) Temporal envelopes outputs of the dual-wavelength SPOPO for various pump durations τp, where both of the degeneracy-analogous (c) τp = 60 fs and (e) τp = 150 fs and the Tpye-0 QPM based (d) τp = 60 fs and (f) τp = 150 fs configurations are included. Inset: The corresponding spectra and spectral phase.
Fig. 7
Fig. 7 The spectral bandwidth as a function of group-velocity matched signal-idler wavelength-pairs based on a fixed femtosecond pump source at 1064 nm, while the initial pump duration is 100 fs. The spectrum data were all extracted at a similar conversion efficiency of 30%.

Tables (1)

Tables Icon

Table 1 Nonlinear Optical Crystal Parameters for 8% doped MgO:PPLN. (λp = 1064 nm, λs = 3.2 μm, λi = 1.59 μm)

Metrics