Abstract

In this contribution we demonstrate goniometric scatterometry measurements of gratings with linewidths down to 25 nm on silicon wafers with an inspection wavelength of 266 nm. For each sample, measurements have been performed in four different configurations and the obtained data have been evaluated in parallel. As results we present the reconstruction of the complete cross-section profile. We introduce a novel geometry parameterization which overcomes some limitations of the default parameterization. A co-variance analysis of the parameters is offered to indicate the soundness of the results. A qualitative comparison with cross-section scanning electron microscope (SEM) images shows excellent agreement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures

Babar K. Minhas, Stephen A. Coulombe, S. Sohail H. Naqvi, and John R. McNeil
Appl. Opt. 37(22) 5112-5115 (1998)

Scatterometry-based metrology with feature region signatures matching

Yi-Sha Ku, Shih-Chun Wang, Deh-Ming Shyu, and Nigel Smith
Opt. Express 14(19) 8482-8491 (2006)

A maximum likelihood approach to the inverse problem of scatterometry

Mark-Alexander Henn, Hermann Gross, Frank Scholze, Matthias Wurm, Clemens Elster, and Markus Bär
Opt. Express 20(12) 12771-12786 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Raymond, in Handbook of Silicon Semiconductor Metrology, (Dekker, 2001), p 477.
  2. C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
    [Crossref]
  3. B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures,” Appl. Opt. 37(22), 5112–5115 (1998).
    [Crossref] [PubMed]
  4. C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
    [Crossref]
  5. I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of subwavelength diffraction gratings: neural-network approach,” Appl. Opt. 37(25), 5830–5835 (1998).
    [Crossref] [PubMed]
  6. C. J. Raymond, “Overview over scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
    [Crossref]
  7. D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
    [Crossref]
  8. N. Kumar, P. Petrik, G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry,” Opt. Express 22(20), 24678–24688 (2014).
    [Crossref] [PubMed]
  9. W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
    [Crossref]
  10. J. Zhu, Y. Shi, L. L. Goddard, and S. Liu, “Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry,” Appl. Opt. 55(25), 6844–6849 (2016).
    [Crossref] [PubMed]
  11. M. H. Madsen and P. E. Hansen, “Scatterometry - fast and robust measurements of nano-textured surfaces,” Surf. Topogr.: Metrol. Prop. 4(2), 023003 (2016).
    [Crossref]
  12. M. Sendelbach and C. Archie, “A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM,” Proc. SPIE 5038, 224 (2003).
    [Crossref]
  13. T. A. Germer, H. J. Patrick, and R. G. Dixson, “A Traceable Scatterometry Measurement of a Silicon Line Grating,” in Frontiers of Characterisation and Nanoelectronics: AIP Conf. Proc. 1395 (2011), 309.
  14. B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
    [Crossref]
  15. C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
    [Crossref]
  16. M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
    [Crossref]
  17. J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
    [Crossref]
  18. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [Crossref] [PubMed]
  19. JCMSuite from JCMwave http://www.jcmwave.com/jcmsuite
  20. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
    [Crossref]
  21. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leip.) 416(7), 636–664 (1935).
    [Crossref]
  22. J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid, “High reflectance ta-C coatings in the extreme ultraviolet,” Opt. Express 21(23), 27537–27549 (2013).
    [Crossref] [PubMed]
  23. G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
    [Crossref]
  24. E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
    [Crossref]
  25. R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
    [Crossref]
  26. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  27. T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
    [Crossref]
  28. J. Pomplun and F. Schmidt, “Reduced basis method for electromagnetic field computations,” in Scientific Computing in Electrical Engineering SCEE 2008, (Springer, 2010), 85–92.
  29. S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
    [Crossref]
  30. Y. J. Cho, W. Chegal, J. P. Lee, and H. M. Cho, “Universal evaluations and expressions of measuring uncertainty for rotating-element spectroscopic ellipsometers,” Opt. Express 23(12), 16481–16491 (2015).
    [Crossref] [PubMed]
  31. R. Ossikovski and O. Arteaga, “Integral decomposition and polarization properties of depolarizing Mueller matrices,” Opt. Lett. 40(6), 954–957 (2015).
    [Crossref] [PubMed]
  32. R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
    [Crossref]
  33. S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
    [Crossref]
  34. S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
    [Crossref]
  35. B. R. Vatti, “A Generic Solution to Polygon Clipping,” Commun. ACM 35(7), 56–63 (1992).
    [Crossref]
  36. General Polygon Clipper library http://www.cs.man.ac.uk/~toby/alan/software//
  37. L. Filipovic, “Topography simulations of novel processing techniques”, Dissertation, Technische Universität Wien, Fakultät für Elektrotechnik und Informationstechnik, (2012), http://www.iue.tuwien.ac.at/phd/filipovic/

2016 (2)

2015 (3)

2014 (5)

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

N. Kumar, P. Petrik, G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry,” Opt. Express 22(20), 24678–24688 (2014).
[Crossref] [PubMed]

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

2013 (2)

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid, “High reflectance ta-C coatings in the extreme ultraviolet,” Opt. Express 21(23), 27537–27549 (2013).
[Crossref] [PubMed]

2011 (1)

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

2009 (2)

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

2008 (2)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

2007 (2)

C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
[Crossref]

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

2005 (1)

C. J. Raymond, “Overview over scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

2003 (1)

M. Sendelbach and C. Archie, “A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM,” Proc. SPIE 5038, 224 (2003).
[Crossref]

1998 (3)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures,” Appl. Opt. 37(22), 5112–5115 (1998).
[Crossref] [PubMed]

I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of subwavelength diffraction gratings: neural-network approach,” Appl. Opt. 37(25), 5830–5835 (1998).
[Crossref] [PubMed]

1997 (2)

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

1995 (1)

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

1992 (1)

B. R. Vatti, “A Generic Solution to Polygon Clipping,” Commun. ACM 35(7), 56–63 (1992).
[Crossref]

1978 (1)

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leip.) 416(7), 636–664 (1935).
[Crossref]

Archie, C.

M. Sendelbach and C. Archie, “A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM,” Proc. SPIE 5038, 224 (2003).
[Crossref]

Arteaga, O.

Bär, M.

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Barnes, B. M.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Bendavid, A.

Bloess, H.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Bodermann, B.

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

Boinapally, K.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Bonifer, S.

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leip.) 416(7), 636–664 (1935).
[Crossref]

Buhr, E.

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
[Crossref]

Bunday, B.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

Cepler, A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

Chegal, W.

Cho, H. M.

Cho, Y. J.

Coene, W. M. J.

Cordes, A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

Coulombe, S. A.

Diebold, A. C.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Diener, A.

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

Dirscherl, K.

C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
[Crossref]

Dziura, T.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

El Gawhary, O.

Elster, C.

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

Endres, J.

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

Ferreras Paz, V.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Fielden, J.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

Frase, C. G.

C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
[Crossref]

Frenner, K.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Germer, T. A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

Goddard, L. L.

Gross, H.

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

Hansen, P. E.

M. H. Madsen and P. E. Hansen, “Scatterometry - fast and robust measurements of nano-textured surfaces,” Surf. Topogr.: Metrol. Prop. 4(2), 023003 (2016).
[Crossref]

Heidenreich, S.

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

Hench, J.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

Henn, M. A.

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

Herr, D.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Hosch, J. W.

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

Hu, J.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Kallioniemi, I.

Khamsepour, B.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Khosla, R. P.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Kline, J.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Kumar, N.

Larruquert, J. I.

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Lee, J. P.

Li, J.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Liu, S.

Liu, Z.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Madsen, M. H.

M. H. Madsen and P. E. Hansen, “Scatterometry - fast and robust measurements of nano-textured surfaces,” Surf. Topogr.: Metrol. Prop. 4(2), 023003 (2016).
[Crossref]

Martin, P. J.

McDonald, R.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

McNeil, J. R.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures,” Appl. Opt. 37(22), 5112–5115 (1998).
[Crossref] [PubMed]

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Méndez, J. A.

Michael Garner, C.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Michaelis, W.

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

Mieher, W.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

Minhas, B. K.

Mirandé, W.

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

Mumane, M. R.

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

Murnane, M. R.

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

Naqvi, S. S. H.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures,” Appl. Opt. 37(22), 5112–5115 (1998).
[Crossref] [PubMed]

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Oja, E.

Ossikovski, R.

Osten, W.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Patrick, H. J.

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Pereira, S. F.

Petrik, P.

Piggot, J.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Poslavsky, L.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

Price, K.

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Prins, S. L.

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Ramanandan, G. K. P.

Raymond, C. J.

C. J. Raymond, “Overview over scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

Richter, J.

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

Rodríguez-de Marcos, L. V.

Roy, S.

Saarinen, J.

Schroder, H.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Schuster, T.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Schwarz, G.

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

Secula, E. M.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Seiler, D. G.

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Sendelbach, M.

M. Sendelbach and C. Archie, “A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM,” Proc. SPIE 5038, 224 (2003).
[Crossref]

Settens, C.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

Shi, Y.

Silver, R. M.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

Storn, R.

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Sunday, D.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Urbach, H. P.

Vaid, A.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Vartanian, V.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

Vatti, B. R.

B. R. Vatti, “A Generic Solution to Polygon Clipping,” Commun. ACM 35(7), 56–63 (1992).
[Crossref]

Ver, A.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Villarrubia, J.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Vladár, A.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Wack, D. C.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

Wilkens, P.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Wurm, M.

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

Yedur, S.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Zangooie, S.

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

Zhang, N. F.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Zhou, H.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Zhu, J.

Zhuang, V.

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

AIP Conf. Proc. (2)

C. J. Raymond, “Overview over scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess, E. M. Secula, D. G. Seiler, R. P. Khosla, D. Herr, C. Michael Garner, R. McDonald, and A. C. Diebold, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Conf. Proc. 1173, 371–378 (2009).
[Crossref]

Ann. Phys. (Leip.) (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leip.) 416(7), 636–664 (1935).
[Crossref]

Ann. Stat. (1)

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

Appl. Opt. (3)

Commun. ACM (1)

B. R. Vatti, “A Generic Solution to Polygon Clipping,” Commun. ACM 35(7), 56–63 (1992).
[Crossref]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

J. Phys. Conf. Ser. (1)

S. Heidenreich, H. Gross, M. A. Henn, C. Elster, and M. Bär, “A surrogate model enables a Bayesian approach to the inverse problem of scatterometry,” J. Phys. Conf. Ser. 490(1), 012007 (2014).
[Crossref]

J. Vac. Sci. Technol. B (2)

C. J. Raymond, M. R. Mumane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13(4), 1484 (1995).
[Crossref]

C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).
[Crossref]

Meas. Sci. Technol. (4)

E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18(3), 667–674 (2007).
[Crossref]

C. G. Frase, E. Buhr, and K. Dirscherl, “CD characterization of nanostructures in SEM metrology,” Meas. Sci. Technol. 18(2), 510–519 (2007).
[Crossref]

M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol. 22(9), 094024 (2011).
[Crossref]

J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol. 25(4), 044004 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Proc. SPIE (7)

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22nm node,” Proc. SPIE 8681, 86813B (2013).
[Crossref]

D. C. Wack, J. Hench, L. Poslavsky, J. Fielden, V. Zhuang, W. Mieher, and T. Dziura, “Opportunities and challenges for optical CD metrology in double patterning process control,” Proc. SPIE 6922, 69221N (2008).
[Crossref]

M. Sendelbach and C. Archie, “A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM,” Proc. SPIE 5038, 224 (2003).
[Crossref]

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladár, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

S. Zangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, B. Khamsepour, H. Schroder, J. Piggot, S. Yedur, Z. Liu, and J. Hu, “Z. Liu J. Hu, “Enhanced optical CD metrology by hybridization and azimuthal scatterometry,” Proc. SPIE 9050, 90501G (2014).
[Crossref]

S. Heidenreich, H. Gross, M. Wurm, B. Bodermann, and M. Bär, “The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors,” Proc. SPIE 9526, 95260U (2015).
[Crossref]

T. A. Germer, H. J. Patrick, R. M. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).
[Crossref]

Surf. Topogr.: Metrol. Prop. (1)

M. H. Madsen and P. E. Hansen, “Scatterometry - fast and robust measurements of nano-textured surfaces,” Surf. Topogr.: Metrol. Prop. 4(2), 023003 (2016).
[Crossref]

Other (6)

T. A. Germer, H. J. Patrick, and R. G. Dixson, “A Traceable Scatterometry Measurement of a Silicon Line Grating,” in Frontiers of Characterisation and Nanoelectronics: AIP Conf. Proc. 1395 (2011), 309.

C. J. Raymond, in Handbook of Silicon Semiconductor Metrology, (Dekker, 2001), p 477.

JCMSuite from JCMwave http://www.jcmwave.com/jcmsuite

J. Pomplun and F. Schmidt, “Reduced basis method for electromagnetic field computations,” in Scientific Computing in Electrical Engineering SCEE 2008, (Springer, 2010), 85–92.

General Polygon Clipper library http://www.cs.man.ac.uk/~toby/alan/software//

L. Filipovic, “Topography simulations of novel processing techniques”, Dissertation, Technische Universität Wien, Fakultät für Elektrotechnik und Informationstechnik, (2012), http://www.iue.tuwien.ac.at/phd/filipovic/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The four measurement configurations differing in polarization and sample orientation. a) s-polarization, transverse magnetic (TM), b) p-polarization, transverse electric (TE), c) s-polarization, TE, d) p-polarization, TM; POI: plane of incidence.
Fig. 2
Fig. 2 Geometrical parameters describing the material domains of the grating’s elementary cross-section cell.
Fig. 3
Fig. 3 Measured diffraction efficiencies (dots) and best fitting simulated efficiencies for the four different measurement configurations. Left: For the structure with a nominal pitch/height/CD of 50/50/25 nm; right: for the structure with a nominal pitch/height/CD of 100/100/55 nm. (AOI: angle of incidence).
Fig. 4
Fig. 4 Comparison of the reconstructed profiles with cross-section SEM images obtained from identically processed samples, with pitch/height/CD of 50/50/25 nm (left) and 100/100/55 nm (right). In red the oxide (incl. the carbon and the EMA layer) and in mint the silicon are shown. (Note that the best-fit profiles have been compressed a little bit in y-direction to compensate the perspective mismatch.)
Fig. 5
Fig. 5 The standard deviation areas of the outer contour for all four samples (nominal values are given). Calculation of the standard deviation areas: We first generated the mean contour (belonging to θ*) and 10000 ��(θ*,Σθ) distributed single test contours. For an equidistant set of points on the mean contour we calculated the distances to each test contour (in normal direction) and then the standard deviations of the respective distance histograms were determined.

Tables (2)

Tables Icon

Table 1 Comparison: Measurement results and nominal values

Tables Icon

Table 2 Correlation parameters for the smallest structure with pitch/height/CD of 50/50/25 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

MSD( θ )= 1 n config AOI ( η meas,AOI η sim,AOI ( θ ) ) 2 ,
( θ * ):= ( 2 MSD θ i θ j ( θ * ) ) i,j=1,...,N .
Σ θ =2MSD( θ * ) 1 ( θ * ).
θ i := θ * +L X i .
Β( t )=( i=0 n ( n i ) t i ( 1t ) ni P i w i )/( i=0 n ( n i ) t i ( 1t ) ni w i ).

Metrics