Abstract

Spin Hall effect of light (SHEL) is prosperous in precision metrology and quantum information processing. In normal situations, the inevitable loss of material will greatly weaken SHEL, which is a major constraint to its potential applications. We first report the loss enhanced SHEL through epsilon and mu-near-zero (EMNZ) metamaterial slab by anisotropic configuration of epsilon and mu tensors. It is verified that the loss of EMNZ metamaterial can effectively enlarge the splitting between right-circularly polarized (RCP) and left-circularly polarized light (LCP) components of linear polarized light even when the incident angle is much larger than critical angle. Calculation results show that when the imaginary part of permeability’s vertical component is equal to 0.1, a flat-top transverse shift peak can be observed which remains unchanged for different vertical component of permeability and thickness of EMNZ metamaterial. In this case the maximum transverse shift of left-circularly polarized light can be increased to 24.676 micrometers by EMNZ metamaterial loss without any amplification method. Meanwhile, the transverse shifts of RCP (LCP) light can be modulated flexibly by EMNZ metamaterial loss. Therefore the loss enhanced SHEL makes quantum devices applicable which paves the way towards on-chip and inter-chip optical circuitry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial

Tingting Tang, Jie Li, Yanfen Zhang, Chaoyang Li, and Li Luo
Opt. Express 24(24) 28113-28121 (2016)

Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab

Wenguo Zhu and Weilong She
Opt. Lett. 40(13) 2961-2964 (2015)

Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate

Jie Li, Tingting Tang, Li Luo, Nengxi Li, and Pengyu Zhang
Opt. Express 25(16) 19117-19128 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  2. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  3. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
    [Crossref]
  4. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
    [Crossref]
  5. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  6. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
    [Crossref]
  7. F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).
  8. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 4 (1972).
    [Crossref]
  9. X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
    [Crossref] [PubMed]
  10. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  11. W. Zhu and W. She, “Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab,” Opt. Lett. 40(13), 2961–2964 (2015).
    [Crossref] [PubMed]
  12. H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
    [Crossref]
  13. T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
    [Crossref] [PubMed]
  14. M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).
  15. B. Wang and K. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
    [Crossref]
  16. L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
    [Crossref]
  17. J. J. Yang, Y. Francescato, S. A. Maier, F. Mao, and M. Huang, “Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs,” Opt. Express 22(8), 9107–9114 (2014).
    [Crossref] [PubMed]
  18. S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
    [Crossref] [PubMed]
  19. L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
    [Crossref]
  20. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
    [Crossref] [PubMed]
  21. K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
    [Crossref]
  22. H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
    [Crossref]
  23. H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
    [Crossref]
  24. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  25. Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. F. Xiao, and Q. Gong, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18(16), 16832–16839 (2010).
    [Crossref] [PubMed]

2016 (2)

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

2015 (6)

W. Zhu and W. She, “Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab,” Opt. Lett. 40(13), 2961–2964 (2015).
[Crossref] [PubMed]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

2014 (2)

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

J. J. Yang, Y. Francescato, S. A. Maier, F. Mao, and M. Huang, “Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs,” Opt. Express 22(8), 9107–9114 (2014).
[Crossref] [PubMed]

2012 (2)

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

2011 (2)

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
[Crossref]

2010 (5)

Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. F. Xiao, and Q. Gong, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18(16), 16832–16839 (2010).
[Crossref] [PubMed]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

B. Wang and K. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

2009 (1)

M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

1972 (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 4 (1972).
[Crossref]

1955 (1)

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

Aiello, A.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Banzer, P.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

Benjamin, L.

L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Chen, H.

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Chen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Corona-Chavez, A.

L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
[Crossref]

Engheta, N.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Fang, K.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Fedorov, F. I.

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

Feng, S.

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Feng, X.

Francescato, Y.

Gong, Q.

Guo, Z.

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

He, H.

Hermosa, N.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Huang, K.

B. Wang and K. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[Crossref]

Huang, M.

J. J. Yang, Y. Francescato, S. A. Maier, F. Mao, and M. Huang, “Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs,” Opt. Express 22(8), 9107–9114 (2014).
[Crossref] [PubMed]

M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).

Imbert, C.

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 4 (1972).
[Crossref]

Jiang, H.

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Leuchs, G.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

Li, C.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Li, Y.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. F. Xiao, and Q. Gong, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18(16), 16832–16839 (2010).
[Crossref] [PubMed]

Ling, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Liu, W.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Liu, Y.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Liu, Z.

Luo, H.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Luo, L.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Maier, S. A.

Mao, F.

Merano, M.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Murthy, D.

L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Neugebauer, M.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Peng, J.

M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).

Qin, Y.

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

She, W.

Shu, W.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Sun, L.

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Sun, Y.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Tang, T.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Wang, B.

B. Wang and K. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[Crossref]

Wen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Woerdman, J. P.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Xiao, Y. F.

Yang, J.

M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).

Yang, J. J.

Yang, X.

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Yu, K.

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Zhang, Z.

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

Zhou, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Zhu, W.

Appl. Phys. Lett. (1)

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

J. Appl. Phys. (1)

K. Yu, Z. Guo, H. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

Light Sci. Appl. (1)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Nat. Photonics (2)

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (4)

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 83(2), 023817 (2010).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Phys. Rev. B (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ -near-zero metamaterials,” Phys. Rev. B 91(4), 045302 (2015).
[Crossref]

Phys. Rev. D Part. Fields (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 4 (1972).
[Crossref]

Phys. Rev. Lett. (2)

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (2)

B. Wang and K. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[Crossref]

L. Benjamin, D. Murthy, and A. Corona-Chavez, “Half mode microwave filters based on epsilon near zero and mu near zero concepts,” Prog. Electromagnetics Res. 113, 379–393 (2011).
[Crossref]

Radioengineering (1)

M. Huang, J. Peng, and J. Yang, “Directive emission obtained by Mu and epsilon-near-zero metamaterials,” Radioengineering 18(2), 124–128 (2009).

Sci. Rep. (3)

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Science (1)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of SHEL through anisotropic EMNZ metamaterial slab
Fig. 2
Fig. 2 Transverse shift contour (integer multiples of wavelength) of LCP light for different Im ( ε ) with H (a) and V (b) inputs, respectively. Here we choose d2 = 2λ, ε = 1 , Re ( ε ) = 0.01 , μ | | = 1 , μ = 0.01 + 0.01 i .
Fig. 3
Fig. 3 Transverse shift contour (integer multiples of wavelength) of LCP light for different Re ( ε ) with V input including Im ( ε ) = 0.001 (a), Im ( ε ) = 0.01 (b) and Im ( ε ) = 0.1 (c). Here we choose d2 = 2λ, μ = 1 , μ = 0.01 + 0.01 i .
Fig. 4
Fig. 4 Transverse shift contour (integer multiples of wavelength) of LCP light for different α with V input including Im ( ε ) = 0.001 (a), Im ( ε ) = 0.01 (b) and Im ( ε ) = 0.1 (c). Here we choose d2 = 2λ, ε = 1 , Re ( ε ) = 0.01 and μ = 1 .
Fig. 5
Fig. 5 Transverse shift contour (integer multiples of wavelength) of LCP light for different Im ( μ ) with V input including Im ( ε ) = 0.001 (a), Im ( ε ) = 0.01 (b) and Im ( ε ) = 0.1 (c). Here we choose ε = 1 , Re ( ε ) = 0.015 , μ = 1 and μ = 0.01 + 0.01 i .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ 2 = ( ε ε ε )
μ ˜ 2 = ( μ μ μ )
t = 2 n 2 3 k 0 2 cos θ i 2 n 2 3 k 0 2 cos θ i cos ( n 2 k 0 d 2 ) + i sin ( n 2 k 0 d 2 ) [ k x 2 ( 1 + n 2 4 ) n 2 2 k 0 2 ( 1 + n 2 2 ) ]
E ˜ i = w 0 2 π exp [ w 0 2 ( k x 2 + k y 2 ) 4 ]
[ E ˜ t H E ˜ t V ] = [ t p k y ( t p t s ) cot ( θ i ) k y ( t p t s ) cot ( θ i ) t s ] [ E ˜ i H E ˜ i V ]
δ H , V ± = y | E H , V ± | 2 dxdy | E H , V ± | 2 dxdy
δ H ± = ± k 0 w 0 2 cot θ i ( | t p | 2 cos θ t cos θ i Re ( t p t s * ) ) k 0 2 w 0 2 | t p | 2 + cot 2 θ i | t p cos θ t cos θ i t s | 2 + ( t p θ i ) 2
δ V ± = ± k 0 w 0 2 cot θ i ( | t s | 2 cos θ t cos θ i Re ( t s t p * ) ) k 0 2 w 0 2 | t s | 2 + cot 2 θ i | t s cos θ t cos θ i t p | 2 + ( t s θ i ) 2

Metrics