Abstract

We report widely tunable two-section distributed Bragg reflector (DBR) lasers, which have InGaAlAs multiple quantum wells (MQWs) as the gain material. By butt-jointing InGaAsP, which has a photoluminescence wavelength of 1.4 μm as the material of the DBR section, a wavelength tuning range of 12 nm can be obtained by current injection into the DBR section. The direct modulation bandwidth of the lasers is greater than 10 GHz over the entire wavelength tuning range up to 40°C. Compared with InGaAsP DBR lasers having the same structure, the InGaAlAs lasers have smaller variations in both the threshold current and slope efficiency with the temperature because of the better electron confinement in the InGaAlAs MQWs. Moreover, the DBR-current-induced decreases in the modulation bandwidth and side mode suppression ratio (SMSR) of the optical spectra are notably smaller for the InGaAlAs lasers than for the InGaAsP lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs

Liangshun Han, Song Liang, Huitao Wang, Lijun Qiao, Junjie Xu, Lingjuan Zhao, Hongliang Zhu, Baojun Wang, and Wei Wang
Opt. Express 22(24) 30368-30376 (2014)

1.3-µm and 10-Gbps tunable DBR-LD for low-cost application of WDM-based mobile front haul networks

Su Hwan Oh, Oh Kee Kwon, Ki Soo Kim, and Chul Wook Lee
Opt. Express 27(20) 29241-29247 (2019)

A flat-output widely tunable laser based on parallel-ring resonator integrated with electroabsorption modulator

Toru Segawa, Wataru Kobayashi, Tomonari Sato, Shinji Matsuo, Ryuzo Iga, and Ryo Takahashi
Opt. Express 20(26) B485-B492 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
    [Crossref]
  2. S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
    [Crossref]
  3. J. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, and L. A. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25(1), 239–248 (2007).
    [Crossref]
  4. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [Crossref]
  5. F. Ponzini, F. Cavaliere, G. Berrettini, M. Presi, E. Ciaramella, N. Calabretta, and A. Bogoni, “Evolution scenario toward WDM-PON,” J. Opt. Commun. Netw. 1(4), C25–C34 (2009).
    [Crossref]
  6. L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
    [Crossref]
  7. L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
  8. L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
    [Crossref] [PubMed]
  9. H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
    [Crossref]
  10. N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
    [Crossref]
  11. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T. Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, “12.5-Gb/s direct modulation up to 115 °C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure,” J. Lightwave Technol. 22(1), 159–165 (2004).
    [Crossref]
  12. A. Davies, S. Fan, R. Penty, and I. White, “Active wavelength control of tunable lasers for use in uncooled WDM systems,” in CLEO 2003, Baltimore, MD, 2003, Paper CTHW6.
  13. Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
    [Crossref]

2016 (2)

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

2014 (2)

2009 (1)

2007 (2)

J. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, and L. A. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25(1), 239–248 (2007).
[Crossref]

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

2005 (1)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

2004 (1)

2003 (1)

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

2001 (1)

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

1988 (1)

T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Allard, V.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Berrettini, G.

Bodéré, A.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Bogoni, A.

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Calabretta, N.

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Cavaliere, F.

Ciaramella, E.

Coldren, L. A.

David, J.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Debrégeas-Sillard, H.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Delorme, F.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

DenBaars, S. P.

Deng, Q.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Fujisaki, S.

Fujiwara, N.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Gaborit, F.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Goix, M.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Guo, L.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

Hamano, F.

Han, L.

Hou, L.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

Ishikawa, M.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Jacquet, J.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Ji, C.

Johansson, L. A.

Kakitsuka, T.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kano, F.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kawaguchi, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kikawa, T.

Kim, K. S.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Kim, S.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Kitatani, T.

Koch, T.

T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Kondo, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Koren, U.

T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

LeGouezigou, O.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Liang, S.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Miller, B.

T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Nakahara, K.

Nomoto, E.

Okamoto, H.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Park, H. L.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Ponzini, F.

Poulsen, H. N.

Presi, M.

Qiao, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Raring, J.

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Rotte, J.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Ryu, S. W.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Sawada, M.

Shinoda, K.

Sim, E. D.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Sim, J. S.

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Skogen, E. J.

Sysak, M. N.

Taniguchi, T.

Tohmori, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Tsuchiya, T.

Voiriot, V.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Vuong, A.

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wang, B.

Wang, H.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Wang, W.

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Xu, J.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Yoshikuni, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Yu, L.

Yuasa, T.

Zhang, C.

Zhao, L.

Zhu, H.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

Appl. Phys. Lett. (1)

T. Koch, U. Koren, and B. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode-hop-free distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

H. Debrégeas-Sillard, A. Vuong, F. Delorme, J. David, V. Allard, A. Bodéré, O. LeGouezigou, F. Gaborit, J. Rotte, M. Goix, V. Voiriot, and J. Jacquet, “DBR module with 20-mW constant coupled output power, over 16 nm (40 50-GHz spaced channels),” IEEE Photonics Technol. Lett. 13(1), 4–6 (2001).
[Crossref]

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

J. Cryst. Growth (1)

S. Kim, J. S. Sim, K. S. Kim, E. D. Sim, S. W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (1)

A. Davies, S. Fan, R. Penty, and I. White, “Active wavelength control of tunable lasers for use in uncooled WDM systems,” in CLEO 2003, Baltimore, MD, 2003, Paper CTHW6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A cross-sectional SEM image of the butt-joint interface and (b) an optical image of a two-section DBR device.
Fig. 2
Fig. 2 The typical light–current characteristics of the (a) InGaAlAs and (b) InGaAsP DBR lasers.
Fig. 3
Fig. 3 Wavelength tuning properties of the (a) and (b) InGaAlAs and (c) and (d) InGaAsP lasers at three different temperatures. The dashed lines in (b) and (d) are guides for the eye to show the decrease in peak SMSR with the DBR current.
Fig. 4
Fig. 4 The typical optical spectra obtained from the InGaAlAs lasers at (a) 20 and (b) 60°C .
Fig. 5
Fig. 5 The small-signal modulation responses at three different temperatures of the (a), (b), and (c) InGaAlAs and (d), (e), and (f) InGaAsP lasers at different DBR currents from 0 to 60 mA. (g) Summary of the modulation bandwidths.

Metrics