Abstract

Micro-fabricated (MEMS) alkali vapor cells are at the heart of the miniaturization of atomic devices such as atomic magnetometers, atomic gyroscopes and atomic clocks. Among the different techniques used to fill microfabricated alkali vapor cell, UV decomposition of rubidium azide (RbN3) into metallic Rb and nitrogen in Al2O3 coated cells is a very promising approach for low-cost wafer-level fabrication. Here we present a detailed lifetime study of such cells. The rubidium consumption being the main identified cell failure mode, it is monitored with an novel image analysis technique and with high temperature long term aging tests.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability

S. Knappe, V. Gerginov, P. D.D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching
Opt. Lett. 30(18) 2351-2353 (2005)

Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks

E. Kroemer, M. Abdel Hafiz, V. Maurice, B. Fouilland, C. Gorecki, and R. Boudot
Opt. Express 23(14) 18373-18380 (2015)

Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells

Vladislav Gerginov, Svenja Knappe, Vishal Shah, Peter D. D. Schwindt, Leo Hollberg, and John Kitching
J. Opt. Soc. Am. B 23(4) 593-597 (2006)

References

  • View by:
  • |
  • |
  • |

  1. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
    [Crossref]
  2. E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
    [Crossref]
  3. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [Crossref]
  4. R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
    [Crossref] [PubMed]
  5. S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
    [Crossref]
  6. M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref] [PubMed]
  7. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
    [Crossref]
  8. T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
    [Crossref]
  9. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
    [Crossref] [PubMed]
  10. L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
    [Crossref]
  11. S. Knappe, “MEMS atomic clocks,” Compr. Microsyst. 3, 571–612 (2007).
  12. Microsemi, “Quantum™ SA.45s Chip Scale Atomic Clock (CSAC),” www.microsemi.com/products/timing-synchronization-systems/embedded-timing-solutions/components/sa-45s-chip-scale-atomic-clock .
  13. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  14. S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
    [Crossref]
  15. C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).
  16. R. Cook and R. Frueholz, “An improved rubidium consumption model for discharge lamps used in rubidium frequency standards,” in “Proceedings of the 42nd Annual Frequency Control Symposium,” (1988), pp. 525–531.
  17. S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
    [Crossref]
  18. T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.
  19. J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
    [Crossref]
  20. K. Zhao and Z. Wu, “Atomic resonance behavior in laser-induced Rb atom desorption - The effect of ambient gas atoms and molecules,” Phys. Lett. A 299, 73–78 (2002).
    [Crossref]
  21. S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.
  22. K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ. 61, 494–498 (1984).
    [Crossref]
  23. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
    [Crossref]

2015 (2)

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

2013 (2)

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

2011 (1)

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

2009 (1)

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

2008 (2)

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

2007 (3)

L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
[Crossref]

S. Knappe, “MEMS atomic clocks,” Compr. Microsyst. 3, 571–612 (2007).

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

2005 (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

2004 (2)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

2002 (1)

K. Zhao and Z. Wu, “Atomic resonance behavior in laser-induced Rb atom desorption - The effect of ambient gas atoms and molecules,” Phys. Lett. A 299, 73–78 (2002).
[Crossref]

1984 (1)

K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ. 61, 494–498 (1984).
[Crossref]

1982 (1)

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

Abbé, P.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

AbdelHafiz, M.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Abdullah, S.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Affolderbach, C.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Arimondo, E.

Bergonzi, G.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Boudot, R.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Briand, D.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Buchler, B.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Campbell, G.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Chutani, R.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Clerc, P.-A.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Cook, R.

R. Cook and R. Frueholz, “An improved rubidium consumption model for discharge lamps used in rubidium frequency standards,” in “Proceedings of the 42nd Annual Frequency Control Symposium,” (1988), pp. 525–531.

Cyr, N.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

de Clercq, E.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

de Rooij, N. F.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Despont, M.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Donley, E. A.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

English, T.

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

Fernholz, T.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Fisher, T. A.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

Frueholz, R.

R. Cook and R. Frueholz, “An improved rubidium consumption model for discharge lamps used in rubidium frequency standards,” in “Proceedings of the 42nd Annual Frequency Control Symposium,” (1988), pp. 525–531.

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

Galliou, S.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Gerginov, V.

L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
[Crossref]

Gobet, J.

S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
[Crossref]

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Gorecki, C.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Gruet, F.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Haesler, J.

S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
[Crossref]

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Hodby, E. R.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

Hollberg, L.

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Hosseini, M.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Ijsselsteijn, R.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Ischer, S.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Jensen, K.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Karlen, S.

S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
[Crossref]

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Kaufmann, J.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Kitching, J.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Knappe, S.

S. Knappe, “MEMS atomic clocks,” Compr. Microsyst. 3, 571–612 (2007).

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Krauter, H.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Kunski, R.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

Laidler, K. J.

K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ. 61, 494–498 (1984).
[Crossref]

Lam, P.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Lecomte, S.

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Liebisch, T. C.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

Liew, L.-A.

L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Liew, L.-A. A.

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

Long, J. L.

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

Lynch, T.

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Maurice, V.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

McCormick, C. F.

Meyer, H. G.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Mileti, G.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Moreland, J.

L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

Overstolz, T.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
[Crossref]

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Passilly, N.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Pellaton, M.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Pétremand, Y.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Pezous, A.

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Polzik, E. S.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Rauch, J.-Y.

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Riley, W.

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

Savard, J. Y.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

SÃÿrensen, A. S.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Scholtes, T.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Schultze, V.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Schwindt, P. D. D.

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Shah, V.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

Sherson, J. F.

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Sparkes, B.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Straessle, R.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

Talkenberg, F.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Têtu, M.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

Volk, C.

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

Woetzel, S.

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Wu, Z.

K. Zhao and Z. Wu, “Atomic resonance behavior in laser-induced Rb atom desorption - The effect of ambient gas atoms and molecules,” Phys. Lett. A 299, 73–78 (2002).
[Crossref]

Zhao, K.

K. Zhao and Z. Wu, “Atomic resonance behavior in laser-induced Rb atom desorption - The effect of ambient gas atoms and molecules,” Phys. Lett. A 299, 73–78 (2002).
[Crossref]

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Appl. Phys. Lett. (4)

L.-A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett. 90, 114106 (2007).
[Crossref]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Compr. Microsyst. (1)

S. Knappe, “MEMS atomic clocks,” Compr. Microsyst. 3, 571–612 (2007).

J. Appl. Phys. (2)

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53, 5387–5391 (1982).
[Crossref]

R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, “Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks,” J. Appl. Phys. 113, 064501 (2013).
[Crossref]

J. Chem. Educ. (1)

K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ. 61, 494–498 (1984).
[Crossref]

Nat. Commun. (1)

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

K. Zhao and Z. Wu, “Atomic resonance behavior in laser-induced Rb atom desorption - The effect of ambient gas atoms and molecules,” Phys. Lett. A 299, 73–78 (2002).
[Crossref]

Phys. Rev. A (1)

E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, “Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes,” Phys. Rev. A 79, 013420 (2009).
[Crossref]

Phys. Rev. Lett. (1)

T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. SÃÿrensen, and E. S. Polzik, “Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Sci. Rep. (1)

R. Chutani, V. Maurice, N. Passilly, C. Gorecki, R. Boudot, M. AbdelHafiz, P. Abbé, S. Galliou, J.-Y. Rauch, and E. de Clercq, “Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications,” Sci. Rep. 5, 14001 (2015).
[Crossref] [PubMed]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Surf. Coat. Technol. (1)

S. Woetzel, F. Talkenberg, T. Scholtes, R. Ijsselsteijn, V. Schultze, and H. G. Meyer, “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings,” Surf. Coat. Technol. 221, 158–162 (2013).
[Crossref]

Other (6)

C. Volk, R. Frueholz, T. English, T. Lynch, and W. Riley, “Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards,” in “38th Annual Symposium on Frequency Control,” (1984).

R. Cook and R. Frueholz, “An improved rubidium consumption model for discharge lamps used in rubidium frequency standards,” in “Proceedings of the 42nd Annual Frequency Control Symposium,” (1988), pp. 525–531.

S. Karlen, J. Gobet, T. Overstolz, and J. Haesler, “Non-destructive MEMS atomic vapor cells characterization by Raman spectroscopy and image analysis,” in “2016 European Frequency and Time Forum (EFTF),” (2016), pp. 1–3.
[Crossref]

T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont, “Wafer scale fabrication of highly integrated rubidium vapor cells,” in “IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS),” (2014), pp. 552–555.

Microsemi, “Quantum™ SA.45s Chip Scale Atomic Clock (CSAC),” www.microsemi.com/products/timing-synchronization-systems/embedded-timing-solutions/components/sa-45s-chip-scale-atomic-clock .

S. Karlen, J. Gobet, T. Overstolz, J. Haesler, and S. Lecomte, “Quantitative micro-Raman spectroscopy for pressure measurement in small volumes,” Manuscript in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication process overview: (0) Si wafer of 1000 μm thickness as substrate, (1) DRIE etching of 2 mm wide through-holes, (2) anodic bonding of 200 μm thick Borofloat® 33 window wafer, (3–4) MVD deposition of 20 nm Al2O3 diffusion barrier, (5) micro-dispensing of RbN3 aqueous solution, (6) anodic bonding of second window, (7) dicing
Fig. 2
Fig. 2 MEMS atomic vapor cells before (left) and after (right) UV irradiation. Small droplets of metallic Rb can be seen after the irradiation.
Fig. 3
Fig. 3 Example of the evolution of the amount of rubidium for two cells with and without Al2O3 coating for cells heated at 180°C. The measurement is derived from the method presented below. The surface of glass covered by metallic rubidium is presented here instead of the Rb volume as the contact angle of Rb on uncoated glass was not calibrated.
Fig. 4
Fig. 4 Image recognition of Rb droplets size in MEMS atomic vapor cell: [left] Microscope image of a cell - [right] Extraction of drop radius by image recognition software
Fig. 5
Fig. 5 Example of the droplets evolution over time for a cell heated at 196°C. Small black dots can be observed on each drop. These particles of unknown composition are likely the nucleation sites of the droplets.
Fig. 6
Fig. 6 Spherical cap model used for Rb drop volume estimation
Fig. 7
Fig. 7 Estimation of Rb initial consumption: The contact angle θ is adapted such that the slope is 1 for the non-0 values of the measured Rb quantity
Fig. 8
Fig. 8 Estimation of the activation energy by fitting of the rubidium consumption rates of cells at different temperatures (k is given here in μg/s)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 RbN 3 2 Rb + 3 N 2
m m e a s . ( t ) = m p r o d . m i n i t . c o n s . k t
V = π h 6 ( 3 a 2 + h 2 )
m m e a s . = { m p r o d . m i n i t . c o n s . if m p r o d . > m i n i t . c o n s . 0 if m p r o d . < m i n i t . c o n s .
k = A e E a R T

Metrics