Abstract

We propose and fabricate a linear variable color filter (LVCF) that possesses an enhanced angular tolerance in conjunction with a wide linear filtering range (LFR) by taking advantage of an Ag-TiO2-Ag configuration. The TiO2 cavity is tapered in thickness along the device so that the resonance wavelength can be continuously tuned according to the position. In addition, the metal-dielectric-metal structure is overlaid with a pre-designed graded anti-reflection coating in SiO2 to complete the etalon, thereby maximizing the transmission efficiency across the entire device. The tapered dielectric layers in the proposed filter were fabricated via glancing angle deposition without the help of any mask or moving parts. The center wavelength was scanned from 410 nm to 566 nm, resulting in an LFR of 156 nm, and the overall spectra exhibited an approximate peak transmission of 40% and spectral bandwidth of 68 nm. The angular tolerance was as large as 45°, incurring a fractional wavelength shift below 4.2%. The resonance wavelength was verified to be linearly dependent on the position, providing a linearity beyond 99%. The proposed LVCF will thus be actively utilized in a portable micro-spectrometer and spectral scanning device.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

5 April 2017: A correction was made to Fig. 2.


OSA Recommended Articles
Highly efficient and angle-tolerant mid-infrared filter based on a cascaded etalon resonator

Chul-Soon Im and Sang-Shin Lee
Opt. Express 25(14) 16083-16091 (2017)

Transmission type color filter incorporating a silver film based etalon

Yeo-Taek Yoon and Sang-Shin Lee
Opt. Express 18(5) 5344-5349 (2010)

Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting

Cheng-Hao Ko, Kuei-Ying Chang, and You-Min Huang
Opt. Express 23(4) 5102-5116 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005).
    [Crossref] [PubMed]
  2. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
    [Crossref]
  3. B. Sheng, P. Chen, C. Tao, R. Hong, Y. Huang, and D. Zhang, “Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique,” Chin. Opt. Lett. 13(12), 122301 (2015).
    [Crossref]
  4. L. Abel-Tibérini, F. Lemarquis, and M. Lequime, “Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors,” Appl. Opt. 47(30), 5706–5714 (2008).
    [Crossref] [PubMed]
  5. A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
    [Crossref] [PubMed]
  6. M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
    [Crossref]
  7. N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
    [Crossref] [PubMed]
  8. X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
    [Crossref]
  9. A. Piegari and J. Bulir, “Variable narrowband transmission filters with a wide rejection band for spectrometry,” Appl. Opt. 45(16), 3768–3773 (2006).
    [Crossref] [PubMed]
  10. A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47(13), C151–C156 (2008).
    [Crossref] [PubMed]
  11. L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
    [Crossref] [PubMed]
  12. G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14(1), 3–28 (2003).
  13. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (Taylor and Francis, 2010), Chap. 7.
  14. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010).
    [Crossref] [PubMed]
  15. N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  16. D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
    [Crossref]
  17. H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).
  18. L. Qian, D. Zhang, C. Tao, R. Hong, and S. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
    [Crossref] [PubMed]
  19. C. H. Ko, K. Y. Chang, and Y. M. Huang, “Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting,” Opt. Express 23(4), 5102–5116 (2015).
    [Crossref] [PubMed]
  20. Delta Optical Thin Film A/S, “Continuously variable filters,” http://www.deltaopticalthinfilm.com/products/linear-variable-filters .
  21. Edmund Optics Inc, “Linear variable bandpass filters,” http://www.edmundoptics.com/optics/optical-filters/bandpass-filters/linear-variable-bandpass-filters/3665 .
  22. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
    [Crossref]
  23. T. H. Noh, Y. T. Yoon, S. S. Lee, D. Y. Choi, and S. C. Lim, “Highly angle-tolerant spectral filter based on an etalon resonator incorporating a high index cavity,” J. Opt. Soc. Korea 16(3), 299–304 (2012).
    [Crossref]
  24. J. L. Zhang, W. D. Shen, P. Gu, Y. G. Zhang, H. T. Jiang, and X. Liu, “Omnidirectional narrow bandpass filter based on metal-dielectric thin films,” Appl. Opt. 47(33), 6285–6290 (2008).
    [Crossref] [PubMed]
  25. A. Hosseini and Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24(1), 221–224 (2007).
    [Crossref] [PubMed]
  26. K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
    [Crossref]
  27. Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  28. K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
    [Crossref] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), Chaps. 7 and 14.
  30. C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
    [Crossref] [PubMed]
  31. M. Ohring, Materials Science of Thin Films, 2nd ed. (Academic, 2001), Chap. 3.
  32. T. H. Noh, Y. T. Yoon, S. S. Lee, D. Y. Choi, and S. C. Lim, “Highly angle-tolerant spectral filter based on an etalon resonator incorporating a high index cavity,” J. Opt. Soc. Korea 16(3), 299–304 (2012).
    [Crossref]
  33. K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
    [Crossref]
  34. H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
    [Crossref] [PubMed]
  35. R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
    [Crossref]

2016 (5)

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).

L. Qian, D. Zhang, C. Tao, R. Hong, and S. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Opt. Lett. 41(5), 982–985 (2016).
[Crossref] [PubMed]

2015 (4)

C. H. Ko, K. Y. Chang, and Y. M. Huang, “Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting,” Opt. Express 23(4), 5102–5116 (2015).
[Crossref] [PubMed]

B. Sheng, P. Chen, C. Tao, R. Hong, Y. Huang, and D. Zhang, “Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique,” Chin. Opt. Lett. 13(12), 122301 (2015).
[Crossref]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

2014 (4)

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

2013 (2)

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (3)

2010 (2)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (1)

2006 (2)

D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

A. Piegari and J. Bulir, “Variable narrowband transmission filters with a wide rejection band for spectrometry,” Appl. Opt. 45(16), 3768–3773 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

2003 (1)

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14(1), 3–28 (2003).

2001 (1)

R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
[Crossref]

Abel-Tibérini, L.

Ayerden, N. P.

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Brongersma, M.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Bulir, J.

Burke, H.

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14(1), 3–28 (2003).

Chang, K. Y.

Chen, P.

Chen, W.

R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
[Crossref]

Choi, D. Y.

Correia, J. H.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Cunningham, B. T.

D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

de Graaf, G.

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Ding, H.

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

Dobbs, D.

D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

Emadi, A.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Enoksson, P.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Fan, S.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Fletcher-Holmes, D. W.

Gao, H.

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

Gao, L.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

Gershkovich, I.

D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

Ghaderi, M.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Gorman, A.

Grabarnik, S.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Gu, P.

Guo, L. J.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hagan, N.

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Harvey, A. R.

Hedsten, K.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Hollowell, A. E.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Honda, T.

Hong, R.

Hosseini, A.

Huang, C. S.

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).

Huang, Y.

Huang, Y. M.

Jeong, S.

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Jiang, H. T.

Jin, R.

R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
[Crossref]

Jung, S.

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Kang, H.

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Kim, E. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Kim, G.

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Ko, C. H.

Krasilnikova Sytchkova, A.

Kudenov, M. W.

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Lee, J. Y.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

Lee, K.

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Lee, S. S.

Lemarquis, F.

Lequime, M.

Lim, S. C.

Lin, H. A.

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).

Liu, X.

Lu, Q.

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

Massoud, Y.

McLeod, R. R.

Noh, T. H.

Park, C. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Piegari, A.

Qian, L.

Seo, S.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Shaw, G.

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14(1), 3–28 (2003).

Shen, W. D.

Sheng, B.

Shin, H.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Shrestha, V. R.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Simpson, T. W.

R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
[Crossref]

Tao, C.

Wang, L. V.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Wu, H.

A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51(19), 4308–4315 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Wu, Y. K.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Yoon, Y. T.

Yu, X.

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

Zhang, C.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, D.

Zhang, J. L.

Zhang, Y. G.

Zhuang, S.

Zia, R.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Adv. Mater. (1)

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

D. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photonics Technol. Lett. (1)

H. A. Lin and C. S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(9), 1042–1045 (2016).

J. Micromech. Microeng. (1)

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. De Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

J. Near Infrared Spectrosc. (1)

X. Yu, Q. Lu, H. Gao, and H. Ding, “Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit,” J. Near Infrared Spectrosc. 24(1), 69–76 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (2)

Light Sci. Appl. (1)

K. T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light Sci. Appl. 3(10), e215 (2014).
[Crossref]

Linc. Lab. J. (1)

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14(1), 3–28 (2003).

Nat. Commun. (1)

H. Kang, S. Jung, S. Jeong, G. Kim, and K. Lee, “Polymer-metal hybrid transparent electrodes for flexible electronics,” Nat. Commun. 6, 6503 (2015).
[Crossref] [PubMed]

Opt. Eng. (1)

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[Crossref]

Struct. Multidiscipl. Optim. (1)

R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modelling criteria,” Struct. Multidiscipl. Optim. 23(1), 1–13 (2001).
[Crossref]

Other (5)

M. Ohring, Materials Science of Thin Films, 2nd ed. (Academic, 2001), Chap. 3.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), Chaps. 7 and 14.

Delta Optical Thin Film A/S, “Continuously variable filters,” http://www.deltaopticalthinfilm.com/products/linear-variable-filters .

Edmund Optics Inc, “Linear variable bandpass filters,” http://www.edmundoptics.com/optics/optical-filters/bandpass-filters/linear-variable-bandpass-filters/3665 .

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (Taylor and Francis, 2010), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic configuration of the proposed transmissive LVCF resorting to a tapered etalon.
Fig. 2
Fig. 2 Points of observation and the corresponding thicknesses of the cavity and ARC.
Fig. 3
Fig. 3 (a) Calculated transmission with respect to the position. (b) Thicknesses of the cavity and ARC in terms of the resonance wavelength. (c) Transmission (T) and reflection (R) for the central position (Pos. #4) hinging on the presence of the ARC.
Fig. 4
Fig. 4 Calculated transmission spectra in terms of the incident angle for three different positions.
Fig. 5
Fig. 5 (a) Modeling the propagation of light for the proposed LVCF. (b–d) Phase shift in response to a single round-trip, which is accounted for by the propagation phase and reflection phases at the top and bottom Ag-TiO2 interfaces for the different positions of Pos. #1, #4, and #7.
Fig. 6
Fig. 6 (a) Schematic diagram of the proposed glancing angle deposition. (b) Calculated thicknesses of the cavity and ARC as a function of position along the substrate.
Fig. 7
Fig. 7 (a) Fabrication procedure for the proposed LVCF. (b) Color images for the fabricated device.
Fig. 8
Fig. 8 (a) Measured transmission spectra and (b) resonance wavelength with the position along the LVCF.
Fig. 9
Fig. 9 Measured transmission spectra with the incident angle for different positions.
Fig. 10
Fig. 10 Refractive indices of Ag and TiO2 adopted for simulation.

Metrics