Abstract

In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips

Longfang Ye, Hao Feng, Guoxiong Cai, Yong Zhang, Bo Yan, and Qing Huo Liu
Opt. Express 27(16) 22088-22099 (2019)

Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves

Kai-Da Xu, Ying Jiang Guo, and Xianjin Deng
Opt. Express 27(4) 4354-4363 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  3. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  5. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  6. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
    [Crossref] [PubMed]
  7. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  8. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref] [PubMed]
  9. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  10. F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
    [Crossref] [PubMed]
  11. X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
    [Crossref]
  12. X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
    [Crossref] [PubMed]
  13. J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
    [Crossref]
  14. L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
    [Crossref]
  15. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  16. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  17. J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
    [Crossref]
  18. J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
    [Crossref]
  19. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  20. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  21. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  22. L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
    [Crossref]
  23. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
    [Crossref] [PubMed]
  24. Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
    [Crossref]
  25. H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
    [Crossref]
  26. W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
    [Crossref]
  27. L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
    [Crossref]
  28. A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
    [Crossref]
  29. Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
    [Crossref] [PubMed]
  30. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  31. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
    [Crossref] [PubMed]
  32. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
    [Crossref] [PubMed]
  33. S. J. Kim and N. H. Myung, “A new PBG structure: Corrugated CPW,” Microw. Opt. Technol. Lett. 39(5), 412–414 (2003).
    [Crossref]

2016 (3)

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
[Crossref] [PubMed]

2015 (6)

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

2014 (7)

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

2013 (3)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

2012 (3)

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

2011 (1)

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

2009 (1)

2008 (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2006 (1)

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

2005 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. J. Kim and N. H. Myung, “A new PBG structure: Corrugated CPW,” Microw. Opt. Technol. Lett. 39(5), 412–414 (2003).
[Crossref]

Agrafiotis, S.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beruete, M.

Cao Pan, B.

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Chen, C.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Chen, H.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
[Crossref] [PubMed]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Chen, K.

Chen, L. H.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Chen, X.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Chen, X. L.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Chen, Z. N.

A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
[Crossref]

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Chong, Y.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Cui, T. J.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Falcone, F.

Feng, Y.

Fernandez-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gao, F.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
[Crossref] [PubMed]

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Gao, Z.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gu, C.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Gu, C. Q.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hooper, I. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Hou, D. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

Hsieh, I. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

Huang, D.

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

Jiang, T.

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Joannopoulos, J. D.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Kaminer, I.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

Kao, Y. H.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

Kianinejad, A.

A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
[Crossref]

Kim, S. J.

S. J. Kim and N. H. Myung, “A new PBG structure: Corrugated CPW,” Microw. Opt. Technol. Lett. 39(5), 412–414 (2003).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Li, E.

Li, L.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Li, R.

Li, Y.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

Li, Z.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Lin, F.

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

Lin, H. E.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

Lin, X.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
[Crossref] [PubMed]

Liu, L.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Liu, L. L.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liu, S.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Liu, X.

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

López, J. J.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

Lu, L.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Maier, S. A.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martin-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Myung, N. H.

S. J. Kim and N. H. Myung, “A new PBG structure: Corrugated CPW,” Microw. Opt. Technol. Lett. 39(5), 412–414 (2003).
[Crossref]

Navarro-Cía, M.

Ning, P.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Ning, P. P.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Niu, Z.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Qiu, C. W.

A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
[Crossref]

Qu, S.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Rivera, N.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Sambles, J. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shen, X. P.

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shi, X.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Soljacic, M.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

Sorolla, M.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Sun, L.

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Wang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Wang, X.

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wu, J. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Xu, B.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Xu, B. Z.

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Xu, H.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Xu, J.

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Xu, Z.

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Yang, B. J.

Yang, T. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yang, Z.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Zhang, A.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhang, B.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

X. Lin, R. Li, F. Gao, E. Li, X. Zhang, B. Zhang, and H. Chen, “Loss induced amplification of graphene plasmons,” Opt. Lett. 41(4), 681–684 (2016).
[Crossref] [PubMed]

Zhang, H. C.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

Zhang, X.

Zhao, J.

Zhao, Y.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Zhou, H.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhou, Y. J.

Zhu, B.

Zhu, G.

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

AIP Adv. (1)

L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, and X. L. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Appl. Phys. Lett. (7)

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

W. Zhang, G. Zhu, L. Sun, and F. Lin, “Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation,” Appl. Phys. Lett. 106(2), 021104 (2015).
[Crossref]

L. Liu, Z. Li, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, and C. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Electron. Lett. (1)

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Kianinejad, Z. N. Chen, and C. W. Qiu, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Trans. Microw. Theory Tech. 63(6), 1817–1825 (2015).
[Crossref]

J. Appl. Phys. (1)

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Liao, J. Zhao, B. Cao Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Laser Photonics Rev. (2)

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. J. Kim and N. H. Myung, “A new PBG structure: Corrugated CPW,” Microw. Opt. Technol. Lett. 39(5), 412–414 (2003).
[Crossref]

Nat. Commun. (1)

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18(10), 105007 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photonics Nanostruct. Fundam. Appl. (1)

J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, and Y. Li, “Super-thin cloaks mediated by spoof surface plasmons,” Photonics Nanostruct. Fundam. Appl. 10(4), 540–546 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Science (2)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Dispersion diagram for the dominant surface mode of the proposed SSPP strip with and without ground. The inset is the schematic of the proposed periodic SSPP structure. The line width, gap width, period, width and depth of grooves, width of ground are designed as H = 10 mm, g = 0.4mm, d = 5 mm, a = 1 mm, h = 4 mm and W = 20 mm. The top and bottom copper layers are with the thickness 0.035 mm and separated by a dielectric substrate of F4B (εr = 2.65, tanδ = 0.003) with the thickness of 0.5 mm.
Fig. 2
Fig. 2 The schematic configuration of the proposed waveguide. (a) Top view of the structure. Lengths of Region I, Region II and Region III are L1 = 10 mm, L2 = 40 mm and L3 = 40 mm and the thickness of the F4B substrate t = 0.5 mm. (b) Region I: CPW region with H = 10 mm, g = 0.4 mm and W = 20 mm. (c) Region II: Matching transition region with depths of grooves varying from h1 = 0.5 mm to h8 = 4 mm with a step of 0.5 mm. (d) Region III: The corrugated strip with ground, in which a = 1 mm, d = 5 mm and h = 4 mm.
Fig. 3
Fig. 3 The transition principle between guided waves and SSPPs with depth h of the periodic SSPP strip increasing from 0.5mm to 4mm by step of 0.5mm. (a) and (b) are the evolution of the normalized wave vector and impedance, respectively.
Fig. 4
Fig. 4 The measured and simulated results of the performance of the proposed waveguides. (a) and (b) are the photographs of the fabricated prototypes without and with DGS, respectively. (c) and (e) are the simulated z-component electric fields distributions of the waveguide without DGS at 4 GHz and 11 GHz, respectively. (d) and (f) are the simulated z-component electric fields distributions of the waveguide with DGS at 4 GHz and 10 GHz, respectively. (g) and (h) are the simulated z-component electric fields distributions at cross sections A and B of the strip of the waveguide at 4 GHz without and with DGS, respectively. (i) and (j) are the simulated (solid lines) and measured (dashed line) S-parameters of the waveguide without and with DGS, respectively.

Metrics