Abstract

This paper reviews digital signal processing techniques that compensate, mitigate, and exploit fiber nonlinearities in coherent optical fiber transmission systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives

Sergei K. Turitsyn, Jaroslaw E. Prilepsky, Son Thai Le, Sander Wahls, Leonid L. Frumin, Morteza Kamalian, and Stanislav A. Derevyanko
Optica 4(3) 307-322 (2017)

Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers

Son Thai Le, Jaroslaw E. Prilepsky, and Sergei K. Turitsyn
Opt. Express 22(22) 26720-26741 (2014)

Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems

Tianhua Xu, Nikita A. Shevchenko, Domaniç Lavery, Daniel Semrau, Gabriele Liga, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 25(4) 3311-3326 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol. 30(12), 2011–2024 (2012).
    [Crossref]
  2. A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
    [Crossref]
  3. L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.
  4. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
    [Crossref]
  5. T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
    [Crossref]
  6. A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
    [Crossref]
  7. Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
    [Crossref]
  8. X. Wei, “Power-weighted dispersion distribution function for characterizing nonlinear properties of long-haul optical transmission links,” Opt. Lett. 31(17), 2544–2546 (2006).
    [Crossref] [PubMed]
  9. Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.
  10. Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
    [Crossref]
  11. A. Ghazisaeidi and R.-J. Essiambre, “Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses,” in European Conference on Optical Communication (2014), paper We.1.3.3.
  12. Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.
  13. T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.
  14. P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
    [Crossref]
  15. Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
    [Crossref]
  16. Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
    [Crossref] [PubMed]
  17. Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
    [Crossref]
  18. M. Malekiha and D. V. Plant, “Adaptive optimization of quantized perturbation coefficients for fiber nonlinearity compensation,” IEEE Photon. J. 8(3), 7200207 (2016).
    [Crossref]
  19. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” IEEE/OSA J. Lightw. Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  20. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” IEEE/OSA J. Lightw. Technol. 28(6), 939–951 (2010).
    [Crossref]
  21. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [Crossref] [PubMed]
  22. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [Crossref] [PubMed]
  23. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
    [Crossref] [PubMed]
  24. G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
    [Crossref]
  25. G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.
  26. E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
    [Crossref] [PubMed]
  27. R. Dar and P. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett. 28(11), 1253–1256 (2016).
    [Crossref]
  28. A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
    [Crossref] [PubMed]
  29. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).
  30. M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
    [Crossref]
  31. D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
    [Crossref]
  32. A. D. Ellis, M. E. McCarthy, M. a. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
    [Crossref] [PubMed]
  33. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
    [Crossref]
  34. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
    [Crossref] [PubMed]
  35. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
    [Crossref]
  36. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (John Wiley & Sons, 1980).
  37. K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” IEEE/OSA J. Lightw. Technol. 15(12), 2232–2241 (1997).
    [Crossref]
  38. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
    [Crossref] [PubMed]
  39. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
    [Crossref]
  40. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).
  41. L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
    [Crossref]
  42. A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
    [Crossref]
  43. G. Shulkind and M. Nazarathy, “Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function,” Opt. Express 21(11), 13145–13161 (2013).
    [Crossref] [PubMed]
  44. A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.
  45. A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
    [Crossref]
  46. F. P. Guiomar and A. N. Pinto, “Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems,” IEEE/OSA J. Lightw. Technol. 31(23), 3879–3891 (2013).
    [Crossref]
  47. F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
    [Crossref]
  48. F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
    [Crossref]
  49. S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
    [Crossref]
  50. F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.
  51. G. Shulkind and M. Nazarathy, “Estimating the Volterra series transfer function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity,” Opt. Express 20(27), 29035–29062 (2012).
    [Crossref] [PubMed]
  52. T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
    [Crossref]
  53. T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
    [Crossref]
  54. D. S. Millar, T. Koike-Akino, S. Ö. Arik, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Opt. Express 22(7), 8798–8812 (2014).
    [Crossref] [PubMed]
  55. A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
    [Crossref] [PubMed]
  56. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).
  57. B. P. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications,” J. Lightw. Technol. 30(13), 1–7 (2012).
    [Crossref]
  58. L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
    [Crossref]
  59. T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.
  60. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
    [Crossref]
  61. A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.
  62. M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
    [Crossref]
  63. M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
    [Crossref]
  64. “2006 Steele Prizes,” Notices of the AMS53(4), 464–470 (2006).
  65. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,” App. Phy. Lett. 23(3), 142–144 (1973).
    [Crossref]
  66. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60(7), 4312–4328 (2014).
    [Crossref]
  67. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part II: Numerical methods,” IEEE Trans. Inform. Theory 60(7), 4329–4345 (2014).
    [Crossref]
  68. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans. Inform. Theory 60(7), 4346–4369 (2014).
    [Crossref]
  69. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34(1), 62–69 (1972).
  70. E. Meron, M. Feder, and M. Shtaif, “On the achievable communication rates of generalized soliton transmission systems,” arXiv:1207.0297v2 (2012).
  71. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
    [Crossref]
  72. J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
    [Crossref] [PubMed]
  73. S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Biennial Symposium on Communications (2014), pp. 92–95.
  74. I. Tavakkolnia and M. Safari, “Signalling over nonlinear fibre-optic channels by utilizing both solitonic and radiative spectra,” in European Conference on Networks and Communications (2015), pp. 103–107.
  75. H. Bülow, “Experimental demonstration of optical signal detection using nonlinear Fourier transform,” J. Lightw. Technol. 33(7), 1433–1439 (2015).
    [Crossref]
  76. Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
    [Crossref]
  77. H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.
  78. V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.
  79. K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
    [Crossref]
  80. H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
    [Crossref]
  81. V. Aref, H. Buelow, and K. Schuh, “On spectral phase estimation of noisy solitonic transmission,” in Optical Fiber Communication Conference (2016), paper W3A.3.
    [Crossref]
  82. S. Wahls and H. V. Poor, “Introducing the fast nonlinear Fourier transform,” in IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 5780–5784.
  83. S. Wahls and H. Poor, “Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber,” in IEEE International Symposium on Information Theory (2015), pp. 1676–1680.
  84. S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Tyrrhenian International Workshop on Digital Communications (2015), pp. 13–16.
  85. Q. Zhang and T. Chan, “A Gaussian noise model of spectral amplitudes in soliton communication systems,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (2015), pp. 455–459.
  86. Q. Zhang and T. Chan, “A spectral domain noise model for optical fibre channels,” in IEEE International Symposium on Information Theory (2015), pp. 1660–1664.
  87. N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.
  88. A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol. 11(3), 395–399 (1993).
    [Crossref]
  89. S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
    [Crossref]
  90. S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.
  91. S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
    [Crossref]
  92. A. Maruta and Y. Matsuda, “Polarization division multiplexed optical eigenvalue modulation,” in International Conference on Photonics in Switching (2015), pp. 265–267.
  93. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34, 62–69 (1972).
  94. S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Commun. doi: , (2016).
    [Crossref]
  95. M. I. Yousefi and X. Yangzhang, “Linear and nonlinear frequency multiplexing,” arxiv:1603.04389 (2016).
  96. X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

2016 (11)

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

M. Malekiha and D. V. Plant, “Adaptive optimization of quantized perturbation coefficients for fiber nonlinearity compensation,” IEEE Photon. J. 8(3), 7200207 (2016).
[Crossref]

R. Dar and P. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
[Crossref]

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

2015 (8)

H. Bülow, “Experimental demonstration of optical signal detection using nonlinear Fourier transform,” J. Lightw. Technol. 33(7), 1433–1439 (2015).
[Crossref]

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

A. D. Ellis, M. E. McCarthy, M. a. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
[Crossref] [PubMed]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

2014 (12)

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

D. S. Millar, T. Koike-Akino, S. Ö. Arik, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Opt. Express 22(7), 8798–8812 (2014).
[Crossref] [PubMed]

A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
[Crossref] [PubMed]

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60(7), 4312–4328 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part II: Numerical methods,” IEEE Trans. Inform. Theory 60(7), 4329–4345 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans. Inform. Theory 60(7), 4346–4369 (2014).
[Crossref]

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

2013 (6)

J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
[Crossref]

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
[Crossref]

F. P. Guiomar and A. N. Pinto, “Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems,” IEEE/OSA J. Lightw. Technol. 31(23), 3879–3891 (2013).
[Crossref]

G. Shulkind and M. Nazarathy, “Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function,” Opt. Express 21(11), 13145–13161 (2013).
[Crossref] [PubMed]

2012 (6)

G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
[Crossref] [PubMed]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol. 30(12), 2011–2024 (2012).
[Crossref]

B. P. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications,” J. Lightw. Technol. 30(13), 1–7 (2012).
[Crossref]

G. Shulkind and M. Nazarathy, “Estimating the Volterra series transfer function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity,” Opt. Express 20(27), 29035–29062 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

2010 (1)

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” IEEE/OSA J. Lightw. Technol. 28(6), 939–951 (2010).
[Crossref]

2009 (1)

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

2008 (4)

2006 (1)

2002 (1)

A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
[Crossref]

2000 (2)

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[Crossref]

1997 (1)

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” IEEE/OSA J. Lightw. Technol. 15(12), 2232–2241 (1997).
[Crossref]

1993 (1)

A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol. 11(3), 395–399 (1993).
[Crossref]

1973 (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,” App. Phy. Lett. 23(3), 142–144 (1973).
[Crossref]

1972 (2)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34(1), 62–69 (1972).

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34, 62–69 (1972).

Abrate, S.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

Agrell, E.

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

Akiyama, Y.

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Alexander Wai, P.-K.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Al-Khateeb, M. a. Z.

Alvarado, A.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

Amado, S. B.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.

Ania-Castañón, J. D.

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Aref, V.

V. Aref, H. Buelow, and K. Schuh, “On spectral phase estimation of noisy solitonic transmission,” in Optical Fiber Communication Conference (2016), paper W3A.3.
[Crossref]

V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.

K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
[Crossref]

H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
[Crossref]

Arik, S. Ö.

Awwad, E.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

Bai, Y.

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Bakhshali, A.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Barletti, L.

S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Tyrrhenian International Workshop on Digital Communications (2015), pp. 13–16.

Bayvel, P.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

Benedetto, S.

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Bertignono, L.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

Beygi, L.

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

Bilal, S. M.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

Blow, K. J.

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

Böcherer, G.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.

Bononi, A.

A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
[Crossref]

Borowiec, A.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
[Crossref] [PubMed]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
[Crossref]

Bosco, G.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Brandt-Pearce, M.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” IEEE/OSA J. Lightw. Technol. 15(12), 2232–2241 (1997).
[Crossref]

Brindel, P.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Buchali, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Buelow, H.

H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
[Crossref]

K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
[Crossref]

V. Aref, H. Buelow, and K. Schuh, “On spectral phase estimation of noisy solitonic transmission,” in Optical Fiber Communication Conference (2016), paper W3A.3.
[Crossref]

Bülow, H.

H. Bülow, “Experimental demonstration of optical signal detection using nonlinear Fourier transform,” J. Lightw. Technol. 33(7), 1433–1439 (2015).
[Crossref]

V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.

Cai, Y.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Carena, A.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Cartledge, J. C.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Chan, T.

Q. Zhang and T. Chan, “A Gaussian noise model of spectral amplitudes in soliton communication systems,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (2015), pp. 455–459.

Q. Zhang and T. Chan, “A spectral domain noise model for optical fibre channels,” in IEEE International Symposium on Information Theory (2015), pp. 1660–1664.

Chan, W. Y.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Chandrasekhar, S.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Charlet, G.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Charlton, D.

Chen, X.

Chiuchiarelli, A.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

Cho, P.

Christensen, L. P. B.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Civelli, S.

S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Tyrrhenian International Workshop on Digital Communications (2015), pp. 13–16.

Clausen, C. B.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[Crossref]

Corteselli, S.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Cui, K.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Curri, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Czegledi, C.

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

Da Ros, F.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

da Silva, E. P.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

Dar, R.

R. Dar and P. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).

Derevyanko, S.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

Derevyanko, S. A.

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
[Crossref]

S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Commun. doi: , (2016).
[Crossref]

Dong, Z.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Dou, L.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

Ellis, A. D.

Essiambre, R.

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

Essiambre, R.-J.

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol. 30(12), 2011–2024 (2012).
[Crossref]

A. Ghazisaeidi and R.-J. Essiambre, “Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses,” in European Conference on Optical Communication (2014), paper We.1.3.3.

Fan, W.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Fan, Y.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Feder, M.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).

E. Meron, M. Feder, and M. Shtaif, “On the achievable communication rates of generalized soliton transmission systems,” arXiv:1207.0297v2 (2012).

Fehenberger, T.

T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.

Fernandez de Jauregui Ruiz, I.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

Ferreira, R. M.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

Forchhammer, S.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Forestieri, E.

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
[Crossref]

Forghieri, F.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

Foschini, G. J.

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

Freckmann, T.

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

Gabitov, I.

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

Galili, M.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

Gao, G.

Gao, Y.

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Gaudette, J.

Gaudino, R.

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Ghazisaeidi, A.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi and R.-J. Essiambre, “Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses,” in European Conference on Optical Communication (2014), paper We.1.3.3.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Goldfarb, G.

Gui, T.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Guiomar, F. P.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

F. P. Guiomar and A. N. Pinto, “Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems,” IEEE/OSA J. Lightw. Technol. 31(23), 3879–3891 (2013).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.

Hanik, N.

T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.

Hari, S.

S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
[Crossref]

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Biennial Symposium on Communications (2014), pp. 92–95.

Harper, P.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Hasegawa, A.

A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol. 11(3), 395–399 (1993).
[Crossref]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,” App. Phy. Lett. 23(3), 142–144 (1973).
[Crossref]

Haunstein, H.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Hauske, F. N.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Hoshida, T.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Hu, Q.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Huang, Y.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Idler, W.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
[Crossref]

V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.

H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
[Crossref]

Ip, E.

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” IEEE/OSA J. Lightw. Technol. 28(6), 939–951 (2010).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” IEEE/OSA J. Lightw. Technol. 26(20), 3416–3425 (2008).
[Crossref]

Ives, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Jiang, Y.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

Kahn, J. M.

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” IEEE/OSA J. Lightw. Technol. 26(20), 3416–3425 (2008).
[Crossref]

Kamalian, M.

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Karagodsky, V.

Karar, A. S.

Karlsson, M.

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

Khurgin, J.

Killey, R. I.

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

Kim, I.

Koike-Akino, T.

Kojima, K.

Kramer, G.

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

Kschischang, F.

S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
[Crossref]

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Biennial Symposium on Communications (2014), pp. 92–95.

Kschischang, F. R.

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60(7), 4312–4328 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part II: Numerical methods,” IEEE Trans. Inform. Theory 60(7), 4329–4345 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans. Inform. Theory 60(7), 4346–4369 (2014).
[Crossref]

B. P. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications,” J. Lightw. Technol. 30(13), 1–7 (2012).
[Crossref]

Laperle, C.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Larsen, K. J.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Lau, A.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Lavery, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

Le, S. T.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Li, G.

Li, L.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Li, X.

Li, Z.

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Liga, G.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

Liu, L.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Liu, X.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Lotz, T. H.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Lu, C.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Malekiha, M.

M. Malekiha and D. V. Plant, “Adaptive optimization of quantized perturbation coefficients for fiber nonlinearity compensation,” IEEE Photon. J. 8(3), 7200207 (2016).
[Crossref]

Martins, C. S.

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.

Maruta, A.

H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.

A. Maruta and Y. Matsuda, “Polarization division multiplexed optical eigenvalue modulation,” in International Conference on Photonics in Switching (2015), pp. 265–267.

Mateo, E.

Matsuda, Y.

A. Maruta and Y. Matsuda, “Polarization division multiplexed optical eigenvalue modulation,” in International Conference on Photonics in Switching (2015), pp. 265–267.

H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.

McCarthy, M. E.

Mecozzi, A.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol. 30(12), 2011–2024 (2012).
[Crossref]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).

Mehta, P.

Meiman, Y.

Meron, E.

E. Meron, M. Feder, and M. Shtaif, “On the achievable communication rates of generalized soliton transmission systems,” arXiv:1207.0297v2 (2012).

Meseguer, A. C.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Millar, D. S.

Muga, N. J.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

Nakashima, H.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Nazarathy, M.

Nespola, A.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

Noe, R.

Nyu, T.

A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol. 11(3), 395–399 (1993).
[Crossref]

O’Sullivan, M.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
[Crossref] [PubMed]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
[Crossref]

Oda, S.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

Oliveira, J. R. F.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

Oveis Gharan, S.

Oxenløwe, L.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

Oyama, T.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Parsons, K.

Peckham, D. W.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Peddanarappagari, K. V.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” IEEE/OSA J. Lightw. Technol. 15(12), 2232–2241 (1997).
[Crossref]

Peng, W.-R.

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Philips, I. D.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

Pinto, A. N.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

F. P. Guiomar and A. N. Pinto, “Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems,” IEEE/OSA J. Lightw. Technol. 31(23), 3879–3891 (2013).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.

Plant, D. V.

M. Malekiha and D. V. Plant, “Adaptive optimization of quantized perturbation coefficients for fiber nonlinearity compensation,” IEEE Photon. J. 8(3), 7200207 (2016).
[Crossref]

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
[Crossref]

Poggiolini, P.

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Poor, H.

S. Wahls and H. Poor, “Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber,” in IEEE International Symposium on Information Theory (2015), pp. 1676–1680.

Poor, H. V.

S. Wahls and H. V. Poor, “Introducing the fast nonlinear Fourier transform,” in IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 5780–5784.

Prati, G.

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
[Crossref]

Prilepsky, J.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

Prilepsky, J. E.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
[Crossref]

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Commun. doi: , (2016).
[Crossref]

Rafique, D.

Randel, S.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Rasmussen, J. C.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

Reimer, M.

Reis, J. D.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

Renaudier, J.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Rios-Müller, R.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Roberts, K.

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
[Crossref] [PubMed]

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

Rosa, P.

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Rossi, S. M.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

Ruiz, I. D. J.

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Safari, M.

I. Tavakkolnia and M. Safari, “Signalling over nonlinear fibre-optic channels by utilizing both solitonic and radiative spectra,” in European Conference on Networks and Communications (2015), pp. 103–107.

Savory, S. J.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Schetzen, M.

M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (John Wiley & Sons, 1980).

Schmalen, L.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Schuh, K.

V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.

H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
[Crossref]

K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
[Crossref]

V. Aref, H. Buelow, and K. Schuh, “On spectral phase estimation of noisy solitonic transmission,” in Optical Fiber Communication Conference (2016), paper W3A.3.
[Crossref]

Schulte, P.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

Secondini, M.

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
[Crossref]

S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Tyrrhenian International Workshop on Digital Communications (2015), pp. 13–16.

Serena, P.

A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
[Crossref]

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34, 62–69 (1972).

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34(1), 62–69 (1972).

Shevchenko, N.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

Shieh, W.

Shiner, A. D.

Shpantzer, I.

Shtaif, M.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).

E. Meron, M. Feder, and M. Shtaif, “On the achievable communication rates of generalized soliton transmission systems,” arXiv:1207.0297v2 (2012).

Shulkind, G.

Simonneau, C.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

Smith, B. P.

B. P. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications,” J. Lightw. Technol. 30(13), 1–7 (2012).
[Crossref]

Steiner, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

Sugihara, T.

Sygletos, S.

Tan, M.

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Tanimura, T.

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Tao, Z.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

Tappert, F.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,” App. Phy. Lett. 23(3), 142–144 (1973).
[Crossref]

Tavakkolnia, I.

I. Tavakkolnia and M. Safari, “Signalling over nonlinear fibre-optic channels by utilizing both solitonic and radiative spectra,” in European Conference on Networks and Communications (2015), pp. 103–107.

Teixeira, A. L.

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

Terauchi, H.

H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.

Toyota, A.

H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.

Tran, P.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

Turitsyn, S.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

Turitsyn, S. K.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
[Crossref]

S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Commun. doi: , (2016).
[Crossref]

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

Uscumlic, B.

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

Vannucci, A.

A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
[Crossref]

Wahls, S.

S. Wahls and H. V. Poor, “Introducing the fast nonlinear Fourier transform,” in IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 5780–5784.

S. Wahls and H. Poor, “Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber,” in IEEE International Symposium on Information Theory (2015), pp. 1676–1680.

Wei, X.

Weidenfeld, R.

Winzer, P.

R. Dar and P. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

Winzer, P. J.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

Xie, C.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Xiong, Q.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

Xu, T.

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

Xu, Y.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

Yam, S. S.-H.

Yaman, F.

Yamauchi, T.

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

Yan, M.

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Yan, W.

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

Yangzhang, X.

M. I. Yousefi and X. Yangzhang, “Linear and nonlinear frequency multiplexing,” arxiv:1603.04389 (2016).

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

Yankov, M. P.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Yoshida, T.

Yousefi, M.

S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
[Crossref]

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Biennial Symposium on Communications (2014), pp. 92–95.

Yousefi, M. I.

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60(7), 4312–4328 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans. Inform. Theory 60(7), 4346–4369 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part II: Numerical methods,” IEEE Trans. Inform. Theory 60(7), 4329–4345 (2014).
[Crossref]

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

M. I. Yousefi and X. Yangzhang, “Linear and nonlinear frequency multiplexing,” arxiv:1603.04389 (2016).

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34, 62–69 (1972).

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34(1), 62–69 (1972).

Zhang, Q.

Q. Zhang and T. Chan, “A Gaussian noise model of spectral amplitudes in soliton communication systems,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (2015), pp. 455–459.

Q. Zhang and T. Chan, “A spectral domain noise model for optical fibre channels,” in IEEE International Symposium on Information Theory (2015), pp. 1660–1664.

Zhao, Y.

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

Zhong, K.

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

Zhu, B.

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

Zhu, F.

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Zhu, L.

Zhuge, Q.

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
[Crossref]

Zibar, D.

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

App. Phy. Lett. (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,” App. Phy. Lett. 23(3), 142–144 (1973).
[Crossref]

IEEE Photon. J. (1)

M. Malekiha and D. V. Plant, “Adaptive optimization of quantized perturbation coefficients for fiber nonlinearity compensation,” IEEE Photon. J. 8(3), 7200207 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (9)

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photon. Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

R. Dar and P. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photon. Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Z. Dong, S. Hari, T. Gui, K. Zhong, M. Yousefi, C. Lu, P.-K. Alexander Wai, F. Kschischang, and A. Lau, “Nonlinear frequency division multiplexed transmissions based on NFT,” IEEE Photon. Technol. Lett. 27(15), 1621–1623 (2015).
[Crossref]

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Volterra series transfer function of single-mode fibers,” IEEE Photon. Technol. Lett. 23(19), 1412–1414 (2011).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” IEEE Photon. Technol. Lett. 20(2), 1360–1369 (2012).

T. Freckmann, R. Essiambre, P. J. Winzer, G. J. Foschini, and G. Kramer, “Fiber capacity limits with optimized ring constellations,” IEEE Photon. Technol. Lett. 21(20), 1496–1498 (2009).
[Crossref]

IEEE Trans. Inform. Theory (3)

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60(7), 4312–4328 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part II: Numerical methods,” IEEE Trans. Inform. Theory 60(7), 4329–4345 (2014).
[Crossref]

M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans. Inform. Theory 60(7), 4346–4369 (2014).
[Crossref]

IEEE/OSA J. Lightw. Technol. (16)

Z. Li, W.-R. Peng, F. Zhu, and Y. Bai, “MMSE-based optimization of perturbation coefficients quantization for fiber nonlinearity,” IEEE/OSA J. Lightw. Technol. 33(20), 4311–4317 (2015).
[Crossref]

Z. Tao, Y. Zhao, W. Fan, L. Dou, T. Hoshida, and J. C. Rasmussen, “Analytical intrachannel nonlinear models to predict the nonlinear noise waveform,” IEEE/OSA J. Lightw. Technol. 33(10), 2111–2119 (2015).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” IEEE/OSA J. Lightw. Technol. 26(20), 3416–3425 (2008).
[Crossref]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” IEEE/OSA J. Lightw. Technol. 28(6), 939–951 (2010).
[Crossref]

A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, P. Brindel, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, and G. Charlet, “Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction,” IEEE/OSA J. Lightw. Technol. 34(8), 1886–1895 (2016).
[Crossref]

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” IEEE/OSA J. Lightw. Technol. 30(3), 310–316 (2012).
[Crossref]

A. Vannucci, P. Serena, and A. Bononi, “The RP method: a new tool for the iterative solution of the nonlinear Schrödinger equation,” IEEE/OSA J. Lightw. Technol. 20(7), 1102–1112 (2002).
[Crossref]

A. Bakhshali, W. Y. Chan, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities,” IEEE/OSA J. Lightw. Technol. 34(8), 1770–1777 (2016).
[Crossref]

F. P. Guiomar and A. N. Pinto, “Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems,” IEEE/OSA J. Lightw. Technol. 31(23), 3879–3891 (2013).
[Crossref]

F. P. Guiomar, S. B. Amado, A. Carena, G. Bosco, A. Nespola, A. L. Teixeira, and A. N. Pinto, “Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems,” IEEE/OSA J. Lightw. Technol. 33(7), 1265–1274 (2015).
[Crossref]

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Time domain Volterra-based digital backpropagation for coherent optical systems,” IEEE/OSA J. Lightw. Technol. 33(15), 3170–3181 (2015).
[Crossref]

S. B. Amado, F. P. Guiomar, N. J. Muga, R. M. Ferreira, J. D. Reis, S. M. Rossi, A. Chiuchiarelli, J. R. F. Oliveira, A. L. Teixeira, and A. N. Pinto, “Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems,” IEEE/OSA J. Lightw. Technol. 34(8), 1793–1799 (2016).
[Crossref]

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” IEEE/OSA J. Lightw. Technol. 31(23), 3839–3852 (2013).
[Crossref]

T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” IEEE/OSA J. Lightw. Technol. 31(4), 538–545 (2013).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” IEEE/OSA J. Lightw. Technol. 32(4), 694–721 (2014).
[Crossref]

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” IEEE/OSA J. Lightw. Technol. 15(12), 2232–2241 (1997).
[Crossref]

J. Lightw. Technol. (11)

H. Bülow, “Experimental demonstration of optical signal detection using nonlinear Fourier transform,” J. Lightw. Technol. 33(7), 1433–1439 (2015).
[Crossref]

A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol. 11(3), 395–399 (1993).
[Crossref]

S. Hari, M. Yousefi, and F. Kschischang, “Multi-eigenvalue communication,” J. Lightw. Technol. 34(13), 3110–3117 (2016).
[Crossref]

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis, and S. K. Turitsyn, “Demonstration of nonlinear inverse synthesis transmission over transoceanic distances,” J. Lightw. Technol. 34(10), 2459–2466 (2016).
[Crossref]

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol. 34(8), 1872–1885 (2016).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol. 29(17), 2570–2576 (2011).
[Crossref]

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol. 30(12), 2011–2024 (2012).
[Crossref]

B. P. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications,” J. Lightw. Technol. 30(13), 1–7 (2012).
[Crossref]

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-adaptive coded modulation for fiber-optic communications,” J. Lightw. Technol. 32(2), 333–343 (2014).
[Crossref]

M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol. 34(22), 5146–5156 (2016).
[Crossref]

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightw. Technol. 34(7), 1599–1609 (2016).
[Crossref]

Opt. Express (16)

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” Opt. Express 33(2), 459–473 (2015).

J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Express 21(20), 344–367 (2013).
[Crossref]

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[Crossref] [PubMed]

M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
[Crossref] [PubMed]

E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
[Crossref] [PubMed]

G. Shulkind and M. Nazarathy, “Estimating the Volterra series transfer function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity,” Opt. Express 20(27), 29035–29062 (2012).
[Crossref] [PubMed]

G. Shulkind and M. Nazarathy, “Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function,” Opt. Express 21(11), 13145–13161 (2013).
[Crossref] [PubMed]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

D. S. Millar, T. Koike-Akino, S. Ö. Arik, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Opt. Express 22(7), 8798–8812 (2014).
[Crossref] [PubMed]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22(17), 20366–20374 (2014).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

A. D. Ellis, M. E. McCarthy, M. a. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels,” Phys. Rev. Lett. 113(1), 013901 (2014).
[Crossref] [PubMed]

Soviet J. of Exp. and Theo. Phys. (2)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34, 62–69 (1972).

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet J. of Exp. and Theo. Phys. 34(1), 62–69 (1972).

Other (35)

E. Meron, M. Feder, and M. Shtaif, “On the achievable communication rates of generalized soliton transmission systems,” arXiv:1207.0297v2 (2012).

A. Ghazisaeidi, I. D. J. Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in European Conference on Optical Communication (2016), paper Th.3.C.4.

“2006 Steele Prizes,” Notices of the AMS53(4), 464–470 (2006).

T. Fehenberger, G. Böcherer, A. Alvarado, and N. Hanik, “LDPC coded modulation with probabilistic shaping for optical fiber systems,” in Optical Fiber Communication Conference (2015), paper Th2A.23.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “On shaping gain in the nonlinear fiber-optic channel,” in International Symposium on Information Theory, 2794–2798 (2014).

T. Oyama, H. Nakashima, S. Oda, T. Yamauchi, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Robust and efficient receiver-side compensation method for intra-channel nonlinear effects,” in Optical Fiber Communication Conference (2014), paper Tu3A.3.
[Crossref]

L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Optical Fiber Communication Conference (2011), paper OThF5.

A. Ghazisaeidi and R.-J. Essiambre, “Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses,” in European Conference on Optical Communication (2014), paper We.1.3.3.

Y. Zhao, L. Dou, Z. Tao, Y. Xu, T. Hoshida, and J. C. Rasmussen, “Nonlinear noise waveform estimation for arbitrary signal based on Nyquist nonlinear model,” in European Conference on Optical Communication (2014), paper P.5.8.

T. Oyama, H. Nakashima, T. Hoshida, T. Tanimura, Y. Akiyama, Z. Tao, and J. C. Rasmussen, “Complexity reduction of perturbation-based nonlinear compensator by sub-band processing,” in Optical Fiber Communication Conference (2015), paper Th3D.7.

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Optical Fiber Communication Conference (2014), paper Th4D.7.
[Crossref]

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,” in European Conference on Optical Communication (2012), paper We.2.C.3.
[Crossref]

Y. Zhao, L. Dou, Z. Tao, M. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Improved analytical model for intra-channel nonlinear distortion by relaxing the lossless assumption,” in European Conference on Optical Communication (2013), paper P.4.15.

G. Liga, C. Czegledi, T. Xu, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD,” in European Conference on Optical Communication (2016), paper P1.SC3.9.

S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Commun. doi: , (2016).
[Crossref]

M. I. Yousefi and X. Yangzhang, “Linear and nonlinear frequency multiplexing,” arxiv:1603.04389 (2016).

X. Yangzhang, M. I. Yousefi, A. Alvarado, D. Lavery, and P. Bayvel, “Nonlinear frequency-division multiplexing in the focusing regime,” arxiv:1611.00235 (2016).

A. Maruta and Y. Matsuda, “Polarization division multiplexed optical eigenvalue modulation,” in International Conference on Photonics in Switching (2015), pp. 265–267.

M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (John Wiley & Sons, 1980).

F. P. Guiomar, S. B. Amado, C. S. Martins, and A. N. Pinto, “Parallel split-step method for digital backpropagation,” in Optical Fiber Communication Conference (2015), paper Th2A.28.

A. Bakhshali, W. Y. Chan, Y. Gao, J. C. Cartledge, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation,” in European Conference on Optical Communication (2014), paper P.3.9.

S. Hari, F. Kschischang, and M. Yousefi, “Multi-eigenvalue communication via the nonlinear Fourier transform,” in Biennial Symposium on Communications (2014), pp. 92–95.

I. Tavakkolnia and M. Safari, “Signalling over nonlinear fibre-optic channels by utilizing both solitonic and radiative spectra,” in European Conference on Networks and Communications (2015), pp. 103–107.

S. T. Le, J. E. Prilepsky, M. Kamalian, P. Rosa, M. Tan, J. D. Ania-Castañón, P. Harper, and S. K. Turitsyn, “Modified nonlinear inverse synthesis for optical links with distributed Raman amplification,” in European Conference on Optical Communication (2015), paper Tu.1.1.3.

H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noise tolerance of eigenvalue modulated optical transmission system based on digital coherent technology,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 778–780.

V. Aref, H. Bülow, K. Schuh, and W. Idler, “Experimental demonstration of nonlinear frequency division multiplexed transmission,” in European Conference on Optical Communication (2015), paper Tu.1.1.2.

K. Schuh, V. Aref, H. Buelow, and W. Idler, “Collision of QPSK modulated solitons,” in Optical Fiber Communication Conference (2016), paper W2A.33.
[Crossref]

H. Buelow, V. Aref, K. Schuh, and W. Idler, “Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton,” in Optical Fiber Communication Conference (2016), paper Tu2A.3.
[Crossref]

V. Aref, H. Buelow, and K. Schuh, “On spectral phase estimation of noisy solitonic transmission,” in Optical Fiber Communication Conference (2016), paper W3A.3.
[Crossref]

S. Wahls and H. V. Poor, “Introducing the fast nonlinear Fourier transform,” in IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 5780–5784.

S. Wahls and H. Poor, “Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber,” in IEEE International Symposium on Information Theory (2015), pp. 1676–1680.

S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Tyrrhenian International Workshop on Digital Communications (2015), pp. 13–16.

Q. Zhang and T. Chan, “A Gaussian noise model of spectral amplitudes in soliton communication systems,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (2015), pp. 455–459.

Q. Zhang and T. Chan, “A spectral domain noise model for optical fibre channels,” in IEEE International Symposium on Information Theory (2015), pp. 1660–1664.

N. Shevchenko, J. Prilepsky, S. Derevyanko, A. Alvarado, P. Bayvel, and S. Turitsyn, “A lower bound on the per soliton capacity of the nonlinear optical fibre channel,” in IEEE Information Theory Workshop (2015), pp. 104–108.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Example of normalized |Im[Cm,n(L/2)]| coefficients for 3600 km of standard single-mode fiber with RRC pulse shaping and SEDC.
Fig. 2
Fig. 2 (a) Dependence of the BER on the optical launch power for a single 128 Gbit/s PM-16QAM signal and a fiber length of 3600 km. (b) Dependence of the BER at optimum launch power on the fiber length. LC: linear post-compensation for dispersion; LC-SEDC: symmetric linear pre- and post-compensation for dispersion; RRC-SEDC: symmetric linear pre- and post-compensation for dispersion, root-raised-cosine pulse shaping, and perturbation-based pre-compensation. Experimental results originally published in [16].
Fig. 3
Fig. 3 DBP SNR performance for a transmission of 31×32 Gbaud PM-16QAM channels over 3200 (40×80) km.
Fig. 4
Fig. 4 DBP gain as a function of (a) NLI reduction and (b) normalized NLC bandwidth for the system in Table 1.
Fig. 5
Fig. 5 Normalized (a) real and (b) imaginary components of the 3rd order IVSTF kernel coefficients at three distinct angular frequencies inside a 256-samples FFT block (ωn = 1, ωn = 128 and ωn = 256). Vertical and horizontal axes correspond to the k and m indices in Eq. (13), respectively. The represented IVSTF inverts a single standard single mode fiber span, with signal transmission at 32 Gbaud and sampling rate of 64 GSa/s.
Fig. 6
Fig. 6 BER performance and maximum signal reach of 124.8 Gbit/s PM-64QAM enabled by CDE and IVSTF. (a) BER versus number of spans for different channel launch powers; (b) Maximum reach versus launch power. Experimental results originally published in [47].
Fig. 7
Fig. 7 Constellation diagrams for AWGN channel with SNR=25 dB and constellations, normalized to unit power. (a) Standard 256QAM, (b) geometrically shaped 256 polar modulation, (c) probabilistically shaped 256QAM with Maxwell-Boltzmann distribution. Different probability mass functions (PMFs) result in different scaling, and thereby different Euclidean distance. However, non-uniform PMFs result in reduced entropy (X) and thus reduced maximum spectral efficiency.
Fig. 8
Fig. 8 Performance of probabilistically optimized QAM. (a) Even though 1024QAM with probabilistic shaping results in increased nonlinear distortion and thus reduced effective received SNR, (b) it achieves ≈ 0.2 bits/symbol of gain, or equivalently ≈ 300 km.

Tables (1)

Tables Icon

Table 1 Parameters of the system used for the numerical study of DBP performance.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

A 0 , x out = ( A 0 , x in A 0 , x IFWM ) exp ( Δ ψ 0 , x ) ( A 0 , x in A 0 , x IFWM ) ( 1 Δ ψ 0 , x ) ,
Δ ψ 0 , x = ψ 0 , x 𝔼 { ψ 0 , x } ,
ψ 0 , x = 2 P [ C 0 , 0 ( L / 2 ) ( | A 0 , x | 2 + | A 0 , y | 2 ) + m 0 C m , 0 ( L / 2 ) ( 2 | A m , x | 2 + | A m , y | 2 ) ] ,
A 0 , x IFWM = 2 j P 3 / 2 [ m 0 , n 0 Im [ C m , n ( L / 2 ) ( A n , x A m , x A m + n , x * + A n , y A m , x A m + n , y * ) + m 0 Im [ C m , 0 ( L / 2 ) ] ( A 0 , y A m , x A m , y * ) ] .
C m , n ( z ) = j γ k [ 1 L span 0 L span f p d ( z ) d z ] 0 z I m , n ( z ) d z ,
I m , n ( z ) = u 0 * ( z , t ) u 0 ( z , t T n ) u 0 ( z , t T m ) u 0 * ( z , t T m + n ) d t ,
u 0 ( z , t ) = 1 { ( u 0 ( 0 , t ) ) exp ( j β 2 ( 2 π f ) 2 z / 2 ) } .
SNR = P N s P ASE + [ η ( B , N s ) η ( B NLC , N s ) ] P 3 + η s n ζ P ASE P 2 ,
[ η ( B , N s ) η ( B NLC , N s ) ] P 3 η s n ζ P ASE P 2
G DBP η ( B , N s ) η ( B , N s ) η ( B NLC , N s ) 3 .
G DBP 3 2 3 4 ( 2 + 3 ) 1 η ( B , 1 ) 1 / 6 P ASE 1 / 3 N s 1 / 2 + / 6 .
ρ η ( B , N s ) η ( B , N s ) η ( B NLC , N s )
A ˜ x NL ( ω n , z L ) = j 8 9 ξ γ K 1 ( ω n , L ) m = 1 N k = 1 N K 3 ( ω n , ω k , ω m ) A ˜ x ( ω n + m k , z ) × [ A ˜ x ( ω k , z ) A ˜ x * ( ω m , z ) + A ˜ y ( ω k , z ) A ˜ y * ( ω m , z ) ] ,
K 1 ( ω n , z ) = exp ( α 2 L s j β 2 2 ω n 2 z ) ,
K 3 ( ω n , ω k , ω m ) = 1 exp ( α L s j β 2 ( ω k ω n ) ( ω k ω m ) L s ) α + j β 2 ( ω k ω n ) ( ω k ω m ) F ( ω n , ω k , ω m ) ,
F ( ω n , ω k , ω m ) = exp ( j β 2 ( ω k ω n ) ( ω k ω m ) 2 ( L L s ) ) sin ( β 2 ( ω k ω n ) ( ω k ω m ) L / 2 ) sin ( β 2 ( ω k ω n ) ( ω k ω m ) L s / 2 ) .
A ˜ x eq ( ω n , z L ) = K 1 ( ω n , L ) A ˜ x ( ω n z ) + A ˜ x NL ( ω n , z L )
( X ; Y ) = lim K 1 K ( X 1 K ; Y 1 K ) = lim K 1 K [ ( X 1 K ) ( X 1 K | Y 1 K ) ] ,
j q z = 2 q t 2 2 s | q | 2 q + n ( t , z )
d v ( t , λ ) d t = [ j λ q ( t ) s q * ( t ) j λ ] v ( t , λ )
a ( λ ) = lim t u 1 ( t , λ ) e j λ t , b ( λ ) = lim t u 2 ( t , λ ) e j λ t ,
Q ( λ ) = { b ( λ ) a ( λ ) , λ , b ( λ ) a ( λ ) , λ 𝔻 .
t | q ( t ) | 2 d t = 1 π λ ln ( 1 + | Q ( λ ) | 2 ) d λ + 4 λ 𝔻 Im ( λ ) .
Q ( λ , z ) = Q ( λ , 0 ) exp ( 4 j s λ 2 z ) , λ 𝔻 .

Metrics