Abstract

We present self-stabilization of the inter-mode separation of a quantum cascade laser (QCL) emitting at 9 μm via cascaded second order nonlinearity. This effect has been observed in lasers that have the optical cavity embedded into a microwave strip-line. The intermodal beat note spectra narrow with increasing laser output power, up to less than 100 kHz. A flat frequency response to direct modulation up to 14 GHz is reported for these microstrip QCLs. The laser inter-mode spacing can be locked to an external RF signal and tuned by more than 1 MHz from the free-running spacing. A parallel study on the same laser material in a non-microstrip line waveguide shows superior performances of the microstrip QCL in terms of the intermodal spectral locking and stability. Finally by analyzing our results with the theory of the injection locking of coupled oscillators, we deduce that the microwave power injected in the microstrip QCL is 2 orders of magnitude higher than in the reference laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation

Pierre Gellie, Stefano Barbieri, Jean-François Lampin, Pascal Filloux, Christophe Manquest, Carlo Sirtori, Isabelle Sagnes, Suraj P. Khanna, Edmund H. Linfield, A. Giles Davies, Harvey Beere, and David Ritchie
Opt. Express 18(20) 20799-20816 (2010)

Sideband generation of coupled-cavity terahertz semiconductor lasers under active radio frequency modulation

Ziping Li, Hua Li, Wenjian Wan, Kang Zhou, Juncheng Cao, Gaolei Chang, and Gangyi Xu
Opt. Express 26(25) 32675-32690 (2018)

Frequency stability of a dual wavelength quantum cascade laser

Ilia Sergachev, Richard Maulini, Tobias Gresch, Stéphane Blaser, Alfredo Bismuto, Antoine Müller, Yves Bidaux, Thomas Südmeyer, and Stéphane Schilt
Opt. Express 25(10) 11027-11037 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013).
  4. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
    [Crossref]
  5. A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29(6), 575–577 (2004).
    [Crossref] [PubMed]
  6. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
    [Crossref] [PubMed]
  7. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
    [Crossref]
  8. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
    [Crossref]
  9. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
    [Crossref] [PubMed]
  10. N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
    [Crossref] [PubMed]
  11. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  12. Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
    [Crossref]
  13. J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
    [Crossref]
  14. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  15. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [Crossref] [PubMed]
  16. P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
    [Crossref]
  17. J. Khurgin, A. Obeidat, S. Lee, and Y. Ding, “Cascaded optical nonlinearities: Microscopic understanding as a collective effect,” J. Opt. Soc. Am. B 14(8), 1977–1983 (1997).
    [Crossref]
  18. C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).
    [Crossref]
  19. E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B Condens. Matter 44(20), 11315–11327 (1991).
    [Crossref] [PubMed]
  20. A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
    [Crossref]
  21. H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
    [Crossref]
  22. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
    [Crossref]
  23. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
    [Crossref]
  24. P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
    [Crossref] [PubMed]
  25. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  26. M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
    [Crossref]
  27. B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
    [Crossref]

2015 (1)

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

2014 (4)

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

2013 (3)

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

2012 (2)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

2011 (2)

2010 (1)

2008 (1)

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

2007 (1)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

2004 (3)

A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29(6), 575–577 (2004).
[Crossref] [PubMed]

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).
[Crossref]

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

2003 (2)

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

2002 (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

1997 (1)

1991 (1)

E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B Condens. Matter 44(20), 11315–11327 (1991).
[Crossref] [PubMed]

1983 (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Ajili, L.

Akikusa, N.

Amanti, M.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Amanti, M. I.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

Bai, Y.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Bandyopadhyay, N.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Barbieri, S.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

Barkan, A.

Bartalini, S.

Beck, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Beere, H.

Beere, H. E.

Belkin, M. A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Belyanin, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Bernard, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

Bismuto, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Bois, P.

E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B Condens. Matter 44(20), 11315–11327 (1991).
[Crossref] [PubMed]

Borri, S.

Bour, D.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Calvar, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

Capasso, F.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Chen, M.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Colombelli, R.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Corzine, S.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Davies, A. G.

De Natale, P.

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Dengler, R.

Di Domenico, G.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Di Francesco, J.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Diehl, L.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Dikmelik, Y.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

Ding, Y.

Dudek, R.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Edamura, T.

Faist, J.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29(6), 575–577 (2004).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Filloux, P.

Friedli, P.

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

Führer, T.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Galli, I.

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Gellie, P.

Gini, E.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Giusfredi, G.

Gmachl, C.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Gordon, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Grant, P. D.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Haddadi, A.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Harder, C.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Heydari, D.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Hinkov, B.

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

Höfler, G.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Hofstetter, D.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Hugi, A.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Kärtner, F. X.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Khanna, S. P.

Khurgin, J.

Khurgin, J. B.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Kocharovsky, V.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Koidl, P.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Kolleck, C.

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).
[Crossref]

Lampin, J. F.

Lee, S.

Linfield, E. H.

Liu, H. C.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Lu, Q. Y.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Maier, T.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Manquest, C.

Mazzotti, D.

McClintock, R.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Mittleman, D. M.

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Obeidat, A.

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Oogarah, T.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Owschimikow, N.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Razavi, B.

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

Razeghi, M.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Rein, B.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Renaudat St-Jean, M.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

Riedi, S.

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

Ritchie, D.

Ritchie, D. A.

Rösch, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

Rosencher, E.

E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B Condens. Matter 44(20), 11315–11327 (1991).
[Crossref] [PubMed]

Sagnes, I.

Scalari, G.

Schilt, S.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Schneider, H.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Siegel, P. H.

Sigg, H.

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

Sirtori, C.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Slivken, S.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Steinkogler, S.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

St-Jean, M. R.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

Thomann, P.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Tittel, F. K.

Tombez, L.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Troccoli, M.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Walther, M.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Walther, T.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Wang, C. Y.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Wasilewski, Z. R.

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

Yamanishi, M.

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Zhou, W. J.

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

Appl. Phys. B (1)

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B 109(3), 407–414 (2012).
[Crossref]

Appl. Phys. Lett. (5)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm,” Appl. Phys. Lett. 106(5), 051105 (2015).
[Crossref]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104(8), 081118 (2014).
[Crossref]

P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, and J. Faist, “Four-wave mixing in a quantum cascade laser amplifier,” Appl. Phys. Lett. 102(22), 222104 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102(18), 181114 (2013).
[Crossref]

IEEE Circuits Dev. Mag. (1)

H. C. Liu, R. Dudek, T. Oogarah, P. D. Grant, Z. R. Wasilewski, H. Schneider, S. Steinkogler, M. Walther, and P. Koidl, “Swept Away,” IEEE Circuits Dev. Mag. 19(6), 9–16 (2003).
[Crossref]

IEEE J. Solid-State Circuits (1)

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8(3), 443–449 (2014).
[Crossref]

Nat. Commun. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (2)

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).
[Crossref]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77(5), 053804 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (1)

E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B Condens. Matter 44(20), 11315–11327 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[Crossref] [PubMed]

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Other (3)

O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).

A. E. Siegman, Lasers (University Science Books, 1986).

J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measured beat note spectra for the QCL (a panel) and microstrip-QCL (b panel) for different optical output power (IMIR). Span is 20 MHz (a) and 10 MHz (b). Resolution band width is 10 kHz. Presented spectra are results of average over 100 scans. QCLs operating temperature is 77K. Panel c: measured beat note full width half maximum as function of the optical power for the QCL (black dot) and microstrip-QCL (red triangles).
Fig. 2
Fig. 2 High frequency modulation frequency response measured with an ultrafast QWIP detector for the QCL (black line) and the microstrip-QCL (red line). Lasers are operating at 77 K.
Fig. 3
Fig. 3 Measurements of the beat note spectra for the standard the QCL for different modulation frequency. The RF power is set is to 100 mW and the optical power is 11.5 mW in panel a and 21.5 mW in panel b. On the Y-axis is reported the modulation frequency and on the X-axis the frequency of the signal on the spectrum analyzer, renormalized with an offset at the round-trip frequency. In color scale is the intensity of the measured RF signal (dBm). Each single scan corresponds to an average over 100 measurements; the resolution bandwidth is 10 kHz.
Fig. 4
Fig. 4 Measurement of the beat note spectra for the microstrip-QCL (panel a) and the QCL (panel b) for different modulation frequency. The optical power is 30 mW for the two devices and the RF power is set is to 10 mW in panel a and to 100 mW in panel b. On the Y-axis is reported the modulation frequency and on the X-axis the frequency of the signal on the spectrum analyzer, renormalized with an offset at the round-trip frequency. In color scale is the intensity of the measured RF signal (dBm). Each single scan corresponds to an average over 100 measurements; the resolution bandwidth is 10 kHz.
Fig. 5
Fig. 5 Graph of the measured IRF Effective ( I RF / f lock where I RF is the injected microwave power needed to measure a given locking range ( f lock ) as function of IMIR Effective I MIR / η MIR , where IMIR is the optical power and η MIR the laser slope efficiency. Data are presented for the QCL (black dot) and microstrip-QCL (red triangles). In dash lines are the linear fits of the experimental data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I SB f lock =π  τ MIR I MIR ;
I RF f lock = π  τ MIR I MIR η RF  η Mir ;

Metrics