Abstract

We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm−1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10−9 W cm−1 Hz1/2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and experimental verification of a photoacoustic flow sensor using computational fluid dynamics

Mikael Lassen, David Balslev-Harder, Anders Brusch, Nikola Pelevic, Stefan Persijn, and Jan C. Petersen
Appl. Opt. 57(4) 802-806 (2018)

Application of fiber-optic sensors to the detection of air-acoustic signals

Gregory S. Maurer, Luise Schuetz, J. H. Cole, and J. A. Bucaro
Opt. Lett. 7(10) 503-505 (1982)

Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser

Yufei Ma, Shunda Qiao, Ying He, Yu Li, Zhonghua Zhang, Xin Yu, and Frank K. Tittel
Opt. Express 27(10) 14163-14172 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Radgen and E. Blaustein, ”Compressed air systems in the European Union. Energy, emissions, savings potential and policy actions,” LOGUL X Verl. Stuttgart (2001).
  2. S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.
  3. International organization for standardization (ISO 8573), https://www.iso.org .
  4. S. Colyer, Sticky debate on compressor oils, FEN, APRIL, (2007).
  5. N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).
  6. F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).
  7. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons Inc., 1980).
  8. A. G. Bell, “The production of sound by radiant energy,” Phil. Mag. 11, 510 (1881).
    [Crossref]
  9. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [Crossref]
  10. S.-L. Chen, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
    [Crossref]
  11. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref] [PubMed]
  12. A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
    [Crossref]
  13. J. Peltola, T. Hieta, and M. Vainio, “Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy,” Opt. Lett. 40, 2933–2936 (2015).
    [Crossref] [PubMed]
  14. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37, 4461–4463 (2012).
    [Crossref] [PubMed]
  15. M. Lassen, L. Lamard, Y. Feng, A. Peremans, and J. C. Petersen, “Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator,” Opt. Lett. 41, 4118–4121 (2016).
    [Crossref] [PubMed]
  16. C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Special Topics 153, 1–18 (2008).
    [Crossref]
  17. M. Lassen, A. Brusch, D. Balslev-Harder, and J. C. Petersen, “Phase-sensitive noise suppression in a photoacoustic sensor based on acoustic circular membrane modes,” Appl. Opt. 54, D38–D42 (2015).
    [Crossref]
  18. A patent has been filed in Denmark and is subsequently to be followed by an international PCT patent, http://www.google.com/patents/WO2016124545A1 .
  19. C. L. Yaws, Chemical Properties Handbook (McGraw-Hill, 1999)
  20. A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
    [Crossref] [PubMed]
  21. J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
    [Crossref] [PubMed]
  22. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
    [Crossref]
  23. M. Lassen, D. Balslev-Clausen, A. Brusch, and J. C. Petersen, “A versatile integrating sphere based photoacoustic sensor for trace gas monitoring,” Opt. Express 22, 11660–11669 (2014).
    [Crossref] [PubMed]
  24. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
    [Crossref]
  25. J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
    [Crossref]
  26. The PNNL Quantitative Infrared Database for Gas-Phase Sensing, nwir.pnl.gov .
  27. P. Patimisco, G Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors 14, 6165–6206 (2014).
    [Crossref] [PubMed]
  28. A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24, 15872–15881 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (3)

M. Lassen, D. Balslev-Clausen, A. Brusch, and J. C. Petersen, “A versatile integrating sphere based photoacoustic sensor for trace gas monitoring,” Opt. Express 22, 11660–11669 (2014).
[Crossref] [PubMed]

P. Patimisco, G Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

S.-L. Chen, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

2013 (1)

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37, 4461–4463 (2012).
[Crossref] [PubMed]

2010 (2)

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

2008 (1)

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Special Topics 153, 1–18 (2008).
[Crossref]

2006 (1)

2005 (1)

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

2000 (1)

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

1881 (1)

A. G. Bell, “The production of sound by radiant energy,” Phil. Mag. 11, 510 (1881).
[Crossref]

Andresen, M.

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Balslev-Clausen, D.

Balslev-Harder, D.

Barth, J.P.

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

Bell, A. G.

A. G. Bell, “The production of sound by radiant energy,” Phil. Mag. 11, 510 (1881).
[Crossref]

Bernacki, B.

Blaustein, E.

P. Radgen and E. Blaustein, ”Compressed air systems in the European Union. Energy, emissions, savings potential and policy actions,” LOGUL X Verl. Stuttgart (2001).

Bonetti, Y.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

Borri, S.

Bozoki, Z.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Brusch, A.

Chen, S.-L.

S.-L. Chen, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Chieco, L.

Colyer, S.

S. Colyer, Sticky debate on compressor oils, FEN, APRIL, (2007).

Cotti, G.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).

Elsland, R.

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

Emmenegger, L.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

Feng, Y.

Fink, T.

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Frese, R.

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Giglio, M.

Gulyas, G.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Harren, F. M. J.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).

Hieta, T.

Hirzel, S.

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

Kriesel, J.

Kung, A. H.

Lamard, L.

Lassen, M.

Looser, H.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

Lopes, N.

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Manninen, A.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Marinov, D.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Miklos, A.

Mohacsi, A.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Nägele, M.

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

Oomens, J.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).

Patel, C. K. N.

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Special Topics 153, 1–18 (2008).
[Crossref]

Patimisco, P.

Pei, S. C.

Peltola, J.

Peremans, A.

Petersen, J. C.

Radgen, P.

P. Radgen and E. Blaustein, ”Compressed air systems in the European Union. Energy, emissions, savings potential and policy actions,” LOGUL X Verl. Stuttgart (2001).

Rey, J.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Rosencwaig, A.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons Inc., 1980).

Rubahn, H.G.

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Saarela, J.

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Sampaolo, A.

Sand, Johan

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Scamarcio, G

P. Patimisco, G Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

Scamarcio, G.

Schröter, M.

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

Sigrist, M.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Sigrist, M. W.

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

Sorvajarvi, T.

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Spagnolo, V.

Szabo, G.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Szabó, A.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

te Lintel Hekkert, S.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).

Tittel, F. K.

Toivonen, J.

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Tuzson, B.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

Vainio, M.

Vogler, D.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

Weißfloch, U.

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

Yaws, C. L.

C. L. Yaws, Chemical Properties Handbook (McGraw-Hill, 1999)

Appl. Opt. (2)

Appl. Phys. B (3)

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109, 461–466 (2012).
[Crossref]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Eur. Phys. J. Special Topics (1)

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Special Topics 153, 1–18 (2008).
[Crossref]

J. Phys.: Conf. Ser. (1)

N. Lopes, R. Frese, T. Fink, M. Andresen, and H.G. Rubahn, “Gaseous contaminant detector in compressed air systems using photoacoustic spectroscopy,” J. Phys.: Conf. Ser. 214, 012059 (2010).

Meas. Sci. Technol. (1)

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Nat. Photonics (1)

S.-L. Chen, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phil. Mag. (1)

A. G. Bell, “The production of sound by radiant energy,” Phil. Mag. 11, 510 (1881).
[Crossref]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

Sensors (2)

J. Saarela, Johan Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

P. Patimisco, G Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

Other (9)

The PNNL Quantitative Infrared Database for Gas-Phase Sensing, nwir.pnl.gov .

A patent has been filed in Denmark and is subsequently to be followed by an international PCT patent, http://www.google.com/patents/WO2016124545A1 .

C. L. Yaws, Chemical Properties Handbook (McGraw-Hill, 1999)

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, in Ensyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Inc., 2000).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons Inc., 1980).

P. Radgen and E. Blaustein, ”Compressed air systems in the European Union. Energy, emissions, savings potential and policy actions,” LOGUL X Verl. Stuttgart (2001).

S. Hirzel, R. Elsland, U. Weißfloch, M. Schröter, and J.P. Barth, “Energy efficiency improvements in compressed air systems: a techno-economic evaluation approach,” Sustainable Production for Resource Efficiency and Ecomobility (2010), pp. 695–702.

International organization for standardization (ISO 8573), https://www.iso.org .

S. Colyer, Sticky debate on compressor oils, FEN, APRIL, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) 3D design drawing of the prototype sensor. The sensor platform consists of three units: the sampling system (not shown), the optical spectroscopy unit, and the electronics/software. The front box is the PA sensor head, while the rear box is the system control unit. The system control unit consist of a combined field-programmable gate array (FPGA) and microprocessors. Through software the system control unit provides control and monitoring of the vital parts in the PA sensor. b) Picture of the inside of the PA sensor head.
Fig. 2
Fig. 2 a) Block diagram of the main parts of the setup. The PAS cell controller regulates the temperature, the flow and the pressure inside the cell. The ICL controller controls the temperature and the modulation of the ICL current. b) Shows the optical parts of the sensor head and inner PAS cell. A 3.38 μm laser beam from the ICL (Interband Cascade Laser) is aligned to make a double pass through the cell in order to enhance the interaction with the oil molecules. Mount for the ICL; PAS cell; back coupling mirror; SW: Silicon Window. The center of the PAS cell shows a COMSOL simulation of the acoustic resonance mode at 6.5 kHz. Two 30 mm in diameter plates constitute the acoustic resonator, and are the main components of the PAS cell.
Fig. 3
Fig. 3 a) Shows the acoustic resonance at approximately 6.5 kHz and the associated drum skin mode. The visualization of the drum skin mode was simulated using COMSOL. b) The normalized spectrum of the ICL (red curve) centered at 3.38 μm. Plotted together with a Hexane absorption spectrum (black curve).
Fig. 4
Fig. 4 The two stage dilution system set up used during tests at VSL. The VSL measurements are conducted by measuring the mass loss of the liquid mixture over time with a sensitive balance. Information about the mixing ratios for the various dilution steps determines the concentration.
Fig. 5
Fig. 5 The sensors linear dependency between the lock-in amplifier signal and the hexane and decane amount of substances (concentrations). a) ISO class 3 and ISO class 4 measurements of Decane and Hexane. b) ISO class 1 (below 80 ppb) and ISO class 2 (below 800 ppb) measurements of decane and hexane. Note that ppm: μmol/mol and ppb: nmol/mol.
Fig. 6
Fig. 6 a) Concentration measurements of decane (C10H22) as a function of time using the PA sensor. The mean concentration used was 11.5±4.4 ppb with a standard deviation of 0.3 ppb. The measurements are processed with a lock-in amplifier with an integration time of 10 seconds. b) The PA background signal level at 0.93 ppb and measurement of 1 ppb decane concentration. The integration time was 10 seconds on the lock-in amplifier, except for the data in the gray shaded area for which it was 1 second.
Fig. 7
Fig. 7 Test of reproduciblility and response time of the sensor. a) The sensor is flowed with 10 ppm of hexane followed by a flow with pure air. The blue curve shows the laser intensity over the measurement time. b) The sensor is flowed with 222 ppb of hexane followed by a flow with pure air. Then flowed with 65 ppb and 24 ppb of hexane followed by a flow with pure air.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S PA = S m PF α ,

Metrics