Abstract

A theoretical model for the passively Q-switched (PQS) operation which includes the spatial overlapping between the pump and lasing modes under the thermal lensing effect is developed to give a transcendental equation that can directly determine the critical parameters such as pulse energy, pulse repetition rate, and pulse width for the PQS performance. More importantly, an analytical function which gives the approximate solution for the transcendental equation as well as a specific critical criterion for good PQS operation are derived for practical analyses and design. A Nd:YVO4/Cr4+:YAG system with a concave-convex resonator which can achieve fairly stable PQS pulse trains even at a high pump level is further exploited to manifest the proposed spatially dependent model. The good agreement between the experimental results and the theoretical predictions is verified to show the feasibility of the proposed model for designing high-power PQS lasers with high accuracy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber

Yingxin Bai, Nianle Wu, Jian Zhang, Jiaqiang Li, Shiqun Li, Jun Xu, and Peizhen Deng
Appl. Opt. 36(12) 2468-2472 (1997)

Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber

Junhai Liu, Bernd Ozygus, Suhui Yang, Jürgen Erhard, Ute Seelig, Adalbert Ding, Horst Weber, Xianlin Meng, Li Zhu, Lianjie Qin, Chenlin Du, Xinguang Xu, and Zongshu Shao
J. Opt. Soc. Am. B 20(4) 652-661 (2003)

Diode-pumped passively Q-switched Nd:YVO4 green laser with a periodically poled KTP and Cr4+:YAG saturable absorber

Guiqiu Li, Shengzhi Zhao, Kejian Yang, and Dechun Li
Appl. Opt. 45(8) 1825-1830 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
    [Crossref] [PubMed]
  2. S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
    [Crossref]
  3. I. N. Smalikho and S. Rahm, “Lidar investigation of the effect of wind and atmospheric turbulence on aircraft wake vortices,” Opt. Atmosf. Okeana 22(2), 1160–1169 (2009).
  4. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  5. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  6. Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
    [Crossref]
  7. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 26.
  8. A. Agnesi and S. Dell’Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
    [Crossref]
  9. M. Arvidsson, “Far-field timing effects with passively Q-switched lasers,” Opt. Lett. 26(4), 196–198 (2001).
    [Crossref] [PubMed]
  10. A. Ishaaya, N. Davidson, and A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
    [Crossref] [PubMed]
  11. S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
    [Crossref]
  12. G. M. Thomas and M. J. Damzen, “Passively Q-switched Nd:YVO4 laser with greater than 11 W average power,” Opt. Express 19(5), 4577–4582 (2011).
    [Crossref] [PubMed]
  13. X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
    [Crossref]
  14. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36(5), 1562–1566 (1965).
    [Crossref]
  15. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]
  16. G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
    [Crossref]
  17. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]
  18. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
    [Crossref]
  19. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17(7), 1166–1175 (2000).
    [Crossref]
  20. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
    [Crossref]
  21. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
    [Crossref]
  22. W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21(10), 737–739 (1996).
    [Crossref] [PubMed]
  23. C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
    [Crossref] [PubMed]
  24. Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
    [Crossref]
  25. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  26. R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
    [Crossref]
  27. P. H. Tuan, C. C. Chang, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Exploiting concave-convex linear resonators to design end-pumped solid-state lasers with flexible cavity lengths: Application for exploring the self-mode-locked operation,” Opt. Express 24(23), 26024–26034 (2016).
    [Crossref] [PubMed]
  28. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
    [Crossref]

2016 (2)

2013 (1)

2012 (2)

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

2011 (2)

2009 (1)

I. N. Smalikho and S. Rahm, “Lidar investigation of the effect of wind and atmospheric turbulence on aircraft wake vortices,” Opt. Atmosf. Okeana 22(2), 1160–1169 (2009).

2008 (1)

2006 (1)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

2005 (1)

2003 (1)

A. Agnesi and S. Dell’Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[Crossref]

2001 (3)

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

M. Arvidsson, “Far-field timing effects with passively Q-switched lasers,” Opt. Lett. 26(4), 196–198 (2001).
[Crossref] [PubMed]

2000 (2)

1997 (5)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1996 (1)

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

1994 (1)

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

1972 (1)

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

1965 (1)

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36(5), 1562–1566 (1965).
[Crossref]

Agnesi, A.

A. Agnesi and S. Dell’Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[Crossref]

Arvidsson, M.

Balembois, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Barr, D. N.

Bass, M.

G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Chang, C. C.

Chang, H. L.

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Chang, Y. T.

Chen, Y. C.

Chen, Y. F.

P. H. Tuan, C. C. Chang, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Exploiting concave-convex linear resonators to design end-pumped solid-state lasers with flexible cavity lengths: Application for exploring the self-mode-locked operation,” Opt. Express 24(23), 26024–26034 (2016).
[Crossref] [PubMed]

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Cheng, K.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Chesler, R. B.

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

Chiang, P. Y.

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Cho, C. Y.

Clarkson, W. A.

Damzen, M. J.

Davidson, N.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Dell’Acqua, S.

A. Agnesi and S. Dell’Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[Crossref]

Druon, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Fève, J.-P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Forget, S.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Friesem, A.

Georges, P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Hanna, D. C.

Hannon, S. M.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Huang, Y. J.

Huang, Y. P.

Ishaaya, A.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Koch, R.

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Landru, N.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Lee, C. Y.

Lei, J. S.

Li, G.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Li, T.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Li, X.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Liang, H. C.

Lin, J.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Maydan, D.

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Nettleton, J. E.

Ozygus, B.

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

Rahm, S.

I. N. Smalikho and S. Rahm, “Lidar investigation of the effect of wind and atmospheric turbulence on aircraft wake vortices,” Opt. Atmosf. Okeana 22(2), 1160–1169 (2009).

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

Schilling, B. W.

Smalikho, I. N.

I. N. Smalikho and S. Rahm, “Lidar investigation of the effect of wind and atmospheric turbulence on aircraft wake vortices,” Opt. Atmosf. Okeana 22(2), 1160–1169 (2009).

Stein, R. A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36(5), 1562–1566 (1965).
[Crossref]

Su, K. W.

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Szabo, A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36(5), 1562–1566 (1965).
[Crossref]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

Thomas, G. M.

Thomson, J. A.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

Tsunekane, M.

Tuan, P. H.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17(7), 1166–1175 (2000).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Wang, S. C.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Wang, X.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Weber, H.

Weng, Z.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Xiao, G.

G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Yang, K.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Zhang, G.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17(7), 1166–1175 (2000).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, S.

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17(7), 1166–1175 (2000).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

A. Agnesi and S. Dell’Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[Crossref]

IEEE J. Quantum Electron. (6)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025–1031 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

J. Appl. Phys. (2)

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36(5), 1562–1566 (1965).
[Crossref]

J. Mod. Opt. (1)

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3A), 1253–1259 (2001).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Opt. Atmosf. Okeana (1)

I. N. Smalikho and S. Rahm, “Lidar investigation of the effect of wind and atmospheric turbulence on aircraft wake vortices,” Opt. Atmosf. Okeana 22(2), 1160–1169 (2009).

Opt. Commun. (1)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J.-P. Fève, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Opt. Express (6)

A. Ishaaya, N. Davidson, and A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

G. M. Thomas and M. J. Damzen, “Passively Q-switched Nd:YVO4 laser with greater than 11 W average power,” Opt. Express 19(5), 4577–4582 (2011).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

P. H. Tuan, C. C. Chang, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Exploiting concave-convex linear resonators to design end-pumped solid-state lasers with flexible cavity lengths: Application for exploring the self-mode-locked operation,” Opt. Express 24(23), 26024–26034 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

X. Li, G. Li, S. Zhao, K. Yang, T. Li, G. Zhang, K. Cheng, and X. Wang, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Laser Technol. 44(4), 929–934 (2012).
[Crossref]

Opt. Lett. (2)

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 26.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The experimental setup of a typical end-pumped PQS laser.
Fig. 2
Fig. 2 Effective mode size (a) on the gain crystal ωc and (b) on the saturable absorber ωs as functions of the pump power for the cases of CV-CX and CV-PL resonators. (c) The key parameter α as a function of the pump power for the cases of CV-CX and CV-PL resonators. The dotted black line marks the critical value of α for a good PQS performance.
Fig. 3
Fig. 3 The experimental results of averaged output power versus incident pump power (left-hand side) and the corresponding PQS pulse trains and single pulse profiles (right-hand side) for the PQS performance of the CV-PL configuration.
Fig. 4
Fig. 4 The experimental results of averaged output power versus incident pump power (left-hand side) and the corresponding PQS pulse trains and single pulse profiles (right-hand side) for the PQS performance of the CV-CX configuration. The solid red line and dashed blue line depict the theoretical predictions by the PQS model with and without the spatial dependence, respectively.
Fig. 5
Fig. 5 The (a) pulse repetition rate, (b) pulse energy, (c) pulse width, and (d) maximum peak power as functions of incident pump power analyzed from the results shown in Fig. 4. The solid red line and dashed blue line depict the theoretical predictions by the PQS model with and without the spatial dependence, respectively.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

dϕ dt = ϕ t r [ 2σn l g 2 σ gs n gs l s 2 σ es n es l s ( ln( 1 R )+L ) ],
dn dt =cσnϕ,
d n gs dt = A A s c σ gs n gs ϕ,
d ϕ ˜ d t ˜ =[ n ˜ (1β) n ˜ gs ( βln( 1 T 0 2 )+ln( 1 R )+L ) ] ϕ ˜ ,
d n ˜ d t ˜ = n ˜ ϕ ˜ ,
d n ˜ gs d t ˜ =α n ˜ gs ϕ ˜ ,
n ˜ gs = n ˜ so ( n ˜ n ˜ i ) α =ln( 1 T 0 2 ) ( n ˜ n ˜ i ) α ,
n ˜ i =ln( 1 T 0 2 )+ln( 1 R )+L,
d ϕ ˜ d n ˜ =[ 1+(1β)ln( 1 T 0 2 )( n ˜ α1 n ˜ i α )+ n ˜ th n ˜ ],
n ˜ th =βln( 1 T 0 2 )+ln( 1 R )+L
α> x x1 ,
ϕ ˜ ( n ˜ )={ ( n ˜ i n ˜ ) ( n ˜ i n ˜ th ) α [ 1 ( n ˜ n ˜ i ) α ] n ˜ th ln( n ˜ i n ˜ ) }.
( n ˜ i n ˜ f ) ( n ˜ i n ˜ th ) α [ 1 ( n ˜ f n ˜ i ) α ] n ˜ th ln( n ˜ i n ˜ f )=0.
η E 1 α ( 1 1 x )[ 1 ( 1 η E ) α ] 1 x ln( 1 1 η E )=0.
E out =h ν l A 2σ ln( 1 R ) ϕ ˜ d t ˜ =h ν l A 2σ ln( 1 R )ln( n ˜ i n ˜ f ) =h ν l A 2σ ln( 1 R )ln( 1 1 η E )
P peak = h ν l t r A 2σ ln( 1 R ) ϕ ˜ ( n ˜ f ) = h ν l t r A 2σ n ˜ th { (x1)[ 1 1 α ( 1 1 x a ) ]ln(x) } ,
η E (x,α)=1exp[ 1.55( α 2 1 α 2 ) ( x α α1 ) 0.85 ]
τ p = E out P peak = t r n ˜ th ln[ 1/ ( 1 η E (x,α) ) ] { (x1)[ 1 1 α ( 1 1 x a ) ]ln(x) } = τ c ln( 1 R )+L βln( 1 T 0 2 )+ln( 1 R )+L ln[ 1/ ( 1 η E (x,α) ) ] { (x1)[ 1 1 α ( 1 1 x a ) ]ln(x) } ,
n ˜ (T)= 2σ A p P in τ f h ν p [ 1exp( T/ τ f ) ],
n ˜ ( T r )= n ˜ i =ln( 1 T 0 2 )+ln( 1 R )+L= 2σ A p P in τ f h ν p [ 1exp( T r / τ f ) ],
f r = 1 T r = 1 τ f ln[ 1 1( P th / P in ) ] P in P th 1 τ f P in P th .
n(x,y,z)=N r o (x,y,z),
n gs (x,y,z)= n gs ,
ϕ(x,y,z)=Φ φ o (x,y,z),
V eff = 1 r o (x,y,z) φ o (x,y,z)dV
S= [ r o (x,y,z) φ o (x,y,z)dV ] 2 r o (x,y,z) φ o 2 (x,y,z)dV
E ˜ out (x,α)=h ν l S V eff 2σ l cav ln( 1 R )ln( 1 1 η E (x,α) ),
P ˜ peak = h ν l t r S l g l cav ln( 1 R ) n ˜ th { (x1)[ 1 1 α ( 1 1 x a ) ]ln(x) },
τ ˜ p = t r V eff 2σ l g ln[ 1/ ( 1 η E (x,α) ) ] n ˜ th { (x1)[ 1 1 α ( 1 1 x a ) ]ln(x) } ,
f ˜ r = 1 τ f ln[ 1 1( P th V eff / P in A p l cav ) ] .
g i * =1 l cav ρ i D d j ( 1 d i ρ i ),i,j=1,2&ij,
l eff =( d 1 + d 2 )D d 1 d 2 ,
ω c = λ l l eff π g 2 * g 1 * (1 g 1 * g 2 * ) [ ( 1 d 1 ρ 1 ) 2 + ( d 1 l eff ) 2 g 1 * (1 g 1 * g 2 * ) g 2 * ] ,
ω s = λ l l eff π g 1 * g 2 * (1 g 1 * g 2 * ) .
r o (x,y,z)=[ κexp(κz) 1exp(κ l g ) ]( 2 π ω p 2 )exp[ 2( x 2 + y 2 ) ω p 2 ],
φ o (x,y,z)=( 2 π ω c 2 l cav )exp[ 2( x 2 + y 2 ) ω c 2 ],
V eff = [ π( ω c 2 + ω p 2 ) l cav ] /2 ,
S= ω c 2 ( ω c 2 +2 ω p 2 ) ( ω c 2 + ω p 2 ) 2 .

Metrics