Abstract

To reduce the manufacturing time of DOEs (Diffractive Optics Elements) and POEs (Periodical Optics Elements), a new fabrication method in direct laser lithography is proposed based on the laser ablation phenomenon and the thermochemical effect of chrome. The basic mechanism of the proposed method and experimental results are also presented. It was found that when a 3 × 3 rectangular pattern is fabricated, the proposed method can reduce the total lithographic length by approximately 33%. The manufacturing time is reduced by nearly 52%. When fabricating a 1,000 × 1,000 rectangular pattern, the manufacturing time was reduced by more than 90%. The time reduction rate is drastically improved when the number of patterns is increased. Various patterns including rectangular, triangular, parallelogram, and diamond shape were fabricated by using the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of height resolution in direct laser lithography

Hyug-Gyo Rhee and Yun-Woo Lee
Opt. Express 20(1) 291-298 (2012)

Cost-effective large-scale fabrication of diffractive optical elements by using conventional semiconducting processes

Seunghwan Yoo, Ho Young Song, Junghoon Lee, Cheol-Yong Jang, and Hakgeun Jeong
Appl. Opt. 51(33) 8052-8056 (2012)

Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces

Taisheng Wang, Weixing Yu, Dengying Zhang, Chunrong Li, Hongxin Zhang, Wenbin Xu, Zhijun Xu, Hua Liu, Qiang Sun, and Zhenwu Lu
Opt. Express 18(24) 25102-25107 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Tang, D. Huber, and B. Akinci, “A comparative analysis of depth-discontinuity and mixed-pixel detection algorithms,” in Proceedings of IEEE sixth International Conference on3-D Digital Imaging and Modeling (IEEE, 2007), paper 0–7695–2939–4/07.
    [Crossref]
  2. A. Shpunt and B. Pesach, “Optical pattern projection,” US patent, US 2010/0284082 A1 (2010).
  3. B. Pesach and Z. Mor, “Projectors of structured light,” US patent, US 8,749,796 B2 (2014).
  4. D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt. 23(4), 565–570 (1984).
    [Crossref] [PubMed]
  5. Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
    [Crossref]
  6. H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
    [Crossref] [PubMed]
  7. M. Haruna, M. Takahashi, K. Wakahayashi, and H. Nishihara, “Laser beam lithographed micro-Fresnel lenses,” Appl. Opt. 29(34), 5120–5126 (1990).
    [Crossref] [PubMed]
  8. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
    [Crossref]
  9. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [Crossref] [PubMed]
  10. J.-M. Asfour and A. G. Poleshchuk, “Asphere testing with a Fizeau interferometer based on a combined computer-generated hologram,” J. Opt. Soc. Am. A 23(1), 172–178 (2006).
    [Crossref] [PubMed]
  11. J. H. Burge, “Fabrication of large circular diffractive optics,” in Diffractive Optics and Micro-Optics, OSA Tech. Dig. 10, 1–3 (1998).
  12. H.-G. Rhee and Y.-W. Lee, “Improvement of linewidth in laser beam lithographed computer generated hologram,” Opt. Express 18(2), 1734–1740 (2010).
    [Crossref] [PubMed]
  13. T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982).
    [Crossref] [PubMed]
  14. S. Ogata, M. Tada, and M. Yoneda, “Electron-beam writing system and its application to large and high-density diffractive optic elements,” Appl. Opt. 33(10), 2032–2038 (1994).
    [Crossref] [PubMed]
  15. H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
    [Crossref] [PubMed]
  16. S. D. Poletaev, “Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution,” in Comp. Opt. Nanophotonics (2015), pp. 82–89.
  17. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
    [Crossref] [PubMed]
  18. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39(13), 2107–2115 (2000).
    [Crossref] [PubMed]

2010 (1)

2009 (2)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

2006 (1)

2002 (1)

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

2000 (1)

1999 (1)

1994 (3)

1990 (1)

1984 (1)

1982 (1)

Akinci, B.

P. Tang, D. Huber, and B. Akinci, “A comparative analysis of depth-discontinuity and mixed-pixel detection algorithms,” in Proceedings of IEEE sixth International Conference on3-D Digital Imaging and Modeling (IEEE, 2007), paper 0–7695–2939–4/07.
[Crossref]

Asfour, J.-M.

Bai, L.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Chen, L.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Cherkashin, V. V.

Churin, E. G.

Cohen, D. K.

de Groot, P.

Deck, L.

Fujita, T.

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Gee, W. H.

Harasaki, A.

Haruna, M.

Huber, D.

P. Tang, D. Huber, and B. Akinci, “A comparative analysis of depth-discontinuity and mixed-pixel detection algorithms,” in Proceedings of IEEE sixth International Conference on3-D Digital Imaging and Modeling (IEEE, 2007), paper 0–7695–2939–4/07.
[Crossref]

Kharissov, A. A.

Kim, D.-I.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Kiryanov, A. V.

Kiryanov, V. P.

Kokarev, S. A.

Korolkov, V. P.

Koronkevich, V. P.

Koyama, J.

Lee, Y.-W.

H.-G. Rhee and Y.-W. Lee, “Improvement of linewidth in laser beam lithographed computer generated hologram,” Opt. Express 18(2), 1734–1740 (2010).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Lewkowicz, J.

Li, Q.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Ludeke, M.

Nishihara, H.

Ogata, S.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Poleshchuk, A. G.

Poletaev, S. D.

S. D. Poletaev, “Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution,” in Comp. Opt. Nanophotonics (2015), pp. 82–89.

Rhee, H.-G.

H.-G. Rhee and Y.-W. Lee, “Improvement of linewidth in laser beam lithographed computer generated hologram,” Opt. Express 18(2), 1734–1740 (2010).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Schmit, J.

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Tada, M.

Takahashi, M.

Tang, P.

P. Tang, D. Huber, and B. Akinci, “A comparative analysis of depth-discontinuity and mixed-pixel detection algorithms,” in Proceedings of IEEE sixth International Conference on3-D Digital Imaging and Modeling (IEEE, 2007), paper 0–7695–2939–4/07.
[Crossref]

Verhoglyad, A. G.

Wakahayashi, K.

Wyant, J. C.

Xue, S.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Yoneda, M.

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Other (5)

P. Tang, D. Huber, and B. Akinci, “A comparative analysis of depth-discontinuity and mixed-pixel detection algorithms,” in Proceedings of IEEE sixth International Conference on3-D Digital Imaging and Modeling (IEEE, 2007), paper 0–7695–2939–4/07.
[Crossref]

A. Shpunt and B. Pesach, “Optical pattern projection,” US patent, US 2010/0284082 A1 (2010).

B. Pesach and Z. Mor, “Projectors of structured light,” US patent, US 8,749,796 B2 (2014).

S. D. Poletaev, “Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution,” in Comp. Opt. Nanophotonics (2015), pp. 82–89.

J. H. Burge, “Fabrication of large circular diffractive optics,” in Diffractive Optics and Micro-Optics, OSA Tech. Dig. 10, 1–3 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) A 3-D measuring scheme using a DOE with a structured light source, and (b) a 1.2 m × 0.7 m film type POE.
Fig. 2
Fig. 2 Schematic configuration of a direct laser lithographic system used to fabricate (a) DOEs and (b) POEs: AOM, acousto-optic modulator; BS, beam splitter; PD, photodetector; QD, quadrant detector; LD, laser diode.
Fig. 3
Fig. 3 Single-line fabrication mechanism.
Fig. 4
Fig. 4 (a) A photographic view of a typical POE pattern, and (b) the stage control scheme for the fabrication of a series of the rectangular patterns.
Fig. 5
Fig. 5 Dual-line fabrication mechanism. The beam size is same as the Fig. 3.
Fig. 6
Fig. 6 (a) Two Cr lines are fabricated at once. (b) New lines just meet the previous lines. (c) The lithographic beam passes through and removes the previous line. (d) Final result. (e) A stage control scheme to fabricate the 3 × 3 rectangular pattern.
Fig. 7
Fig. 7 Sectioning profiles of the pattern formed with various intensities.
Fig. 8
Fig. 8 3D measuring results of the (a) single and (b) dual lines obtained by a commercial white-light scanning interferometer [17, 18].
Fig. 9
Fig. 9 Photographic views, 3D images, and their diffractive patterns of (a) rectangular, (b) triangular, (c) parallelogram, and (c) diamond DOEs.
Fig. 10
Fig. 10 SEM image of the diamond pattern. Hitachi SU6600 was used to take the image.
Fig. 11
Fig. 11 Experimental setup used to capture the diffractive image of DOEs.

Metrics