Abstract

Calculations on the influence of compressible gas effects on the performances of exciplex pumped alkali vapor lasers (XPALs) with supersonic flow system are made. Modified configuration of experimental apparatus for XPALs is designed in this paper as well. On the basis of fluid mechanics and thermodynamics, theoretical derivations for the boundary of temperature gradient which actually is the position of shock wave plane are firstly deduced and presented. And our simulated results show that XPALs have broadband of not only in absorption spectrum but also in pump power, which will be helpful for researchers to find the way to make very high-power gas lasers. In addition, the simulating method to obtain the operating temperature of XPALs is given, and predicted the value, at the conditions of this paper, is 1500K with optimized parameters of Pp = 3×106 W, Tstag=513 K, initial Mach number = 2.5.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of supersonic diode pumped alkali lasers

Eyal Yacoby, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 32(9) 1824-1833 (2015)

Theoretical model and simulations for a cw exciplex pumped alkali laser

Wei Huang, Rongqing Tan, Zhiyong Li, and Xiaochuan Lu
Opt. Express 23(25) 31698-31715 (2015)

Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices

Eyal Yacoby, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
Opt. Express 24(5) 5469-5477 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  2. G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
    [Crossref]
  3. A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  4. J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
    [Crossref] [PubMed]
  5. J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
    [Crossref]
  6. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
  7. A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
    [Crossref]
  8. A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
    [Crossref]
  9. D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
    [Crossref]
  10. X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
    [Crossref]
  11. X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
    [Crossref]
  12. E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices,” Opt. Express 24(5), 5469–5477 (2016).
    [Crossref] [PubMed]
  13. A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow (John Wiley & Sons, 1953).
  14. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  15. Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
    [Crossref]
  16. M. Mahmoud and Y. Gamal, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Opt. Appl. 40, 129–141 (2010).
  17. E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125(3), 795–801 (1962).
    [Crossref]
  18. W. Huang, R. Tan, Z. Li, and X. Lu, “Theoretical model and simulations for a cw exciplex pumped alkali laser,” Opt. Express 23(25), 31698–31715 (2015).
    [Crossref] [PubMed]

2017 (2)

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

2013 (1)

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

2012 (1)

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

2011 (1)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

2010 (4)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

M. Mahmoud and Y. Gamal, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Opt. Appl. 40, 129–141 (2010).

2009 (1)

2008 (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

2004 (1)

2002 (1)

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[Crossref]

1962 (1)

E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125(3), 795–801 (1962).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Carroll, D. A.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Carroll, D. L.

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Davis, S. J.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

Dubinskii, M. A.

Dudov, A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Eden, J. G.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

El-Genk, M. S.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[Crossref]

Eroshenko, V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Gabally-Kinney, K. L.

Gamal, Y.

M. Mahmoud and Y. Gamal, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Opt. Appl. 40, 129–141 (2010).

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Heaven, M. C.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Hinnov, E.

E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125(3), 795–801 (1962).
[Crossref]

Hirschberg, J. G.

E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125(3), 795–801 (1962).
[Crossref]

Huang, J.

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

Huang, W.

Kanz, V. K.

Kessler, W. J.

Krupke, W. F.

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Li, Z.

Lu, X.

Mahmoud, M.

M. Mahmoud and Y. Gamal, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Opt. Appl. 40, 129–141 (2010).

Merkle, L. D.

Mikaelian, G.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Momozaki, Y.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[Crossref]

Palla, A. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Pan, B.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Pitz, G. A.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Rawlins, W. T.

Readle, J. D.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Rosenwaks, S.

Rus, A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sadot, O.

Schriempf, J. T.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Shen, B.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

Spinka, T. M.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Tan, R.

Verdeyen, J. T.

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Wagner, C. J.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Waichman, K.

Xia, C.

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

Xu, X.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

Yacoby, E.

Electron. Lett. (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. A. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

J. Appl. Phys. (2)

X. Xu, B. Shen, J. Huang, C. Xia, and B. Pan, “Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow,” J. Appl. Phys. 122(2), 023304 (2017).
[Crossref]

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

Opt. Appl. (1)

M. Mahmoud and Y. Gamal, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Opt. Appl. 40, 129–141 (2010).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125(3), 795–801 (1962).
[Crossref]

Phys. Rev. A (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D 2 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and He 3 with comparison to the D 1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Proc. SPIE (3)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, M. C. Heaven, S. J. Davis, and J. T. Schriempf, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Other (1)

A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow (John Wiley & Sons, 1953).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Nozzle schematic experimental apparatus for XPALs with supersonic flow, which, in fact, is the Laval nozzle in the fluid mechanics but only diverging part is drawn.
Fig. 2
Fig. 2 Energy levels involved in a Cs-Ar XPAL
Fig. 3
Fig. 3 Schematic illustration for iteration procedure.
Fig. 4
Fig. 4 Dependence of stimulated emission output power on pump power.
Fig. 5
Fig. 5 Temperature gradients on radial direction of stimulated emission zone.
Fig. 6
Fig. 6 Dependence of Mach number on power of pump lights (a) and radial distance (b).
Fig. 7
Fig. 7 Dependence of the coordinate for the shock wave plane on the z-axis on power of pump lights.

Tables (1)

Tables Icon

Table 1 Parameters and values involved in model.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

A i A thr = 1 M i [ ( 2 k+1 )( 1+ k1 2 M i 2 ) ] k+1 2(k1)
n stag n = ( P stag P ) 1 k = ( T stag T ) 1 k1 ,
T stag T i =(1+ k1 2 M i 2 ),
d n 0 dt = k 01 n 0 [Ar]+ k 10 n 1 + R 2 + k 34 n 3 n 4 + k pen n 3 n 4 ,
d n 1 dt = k 01 n 0 [Ar] k 10 n 1 F,
d n 2 dt =F k 23 n 2 + k 32 n 3 [Ar],
d n 3 dt = k 23 n 2 k 32 n 3 [Ar]+ A 43 n4 n 3 τ L2 k 34 n 3 2 F p F l 2 R 3ai k pen n 3 n 4 ,
d n 4 dt = k 34 n 3 2 + F p + F l + R 2 + R 3b F pi F li k pen n 3 n 4 A 43 n 4 R 4ai ,
d n 5 dt = F pi + F li + k pen n 3 n 4 R 1 R 3b ,
d n 6 dt = R 1 + R 3ai + R 4ai R 2 ,
Q=2yl[( k 01 n 0 [Ar] k 10 n 1 )Δ E 10 +( k 23 n 2 k 32 n 3 [Ar])Δ E 23 , + R 2 (Δ E i2 +Δ E 4i2 )+ R 3b Δ E 4i1 ]dz
y= r 2 (rz) 2 ,
R mach ={ C p (T)( T z T z1 ) ω ˙ y r ,z<r C p (T)( T z T z1 ) ω ˙ ,zr ,
ω ˙ (Cs,Ar)= k R μ Cs,Ar P stag (Cs,Ar) T M in (1+ k1 2 M in 2 ) k+1 2(k1) A in ,
n Cs = ω ˙ (Cs) μ Cs N a A lsr M lsr u s (1+ k+1 2 M lsr 2 ),
C opp (T)={ Kl2 r 2 y 2 ( T z T z1 ) dz ,z<r K A lsr ( T z T z1 ) dz ,zr ,
C layer =2K( T z T wall ) Re r 2 y 2 dz,
R mach + C opp + C layer =Q.
[Ar+Cs] N a μAv=const,
d[Ar] [Ar] + dA A + dv v =0.
vdv= [Ar] N a μ Ar dp,
dA A = (1 M 2 ) N a [Ar] μ Ar dp.
ω ˙ 2 A lsr ( kR μ Ar T lsr M lsr kR μ Ar T wall M rs )= P rs,stag (1+ k1 2 M lsr 2 ) k k1 P rs ,
K dT dl | l= l sw , T 0 = T wall = C opp ,
M rs = ( M ls 2 + 2 k1 )/( 2k M ls 2 k1 1) ,
M ls = A lsr A thr M in .
P rs = P ls 2k M ls k+1 k1 k+1 ,
P ls = P ls,stag (1+ k1 2 M ls 2 ) k k1 .
P rs,stag = P ls,stag [ k+1 2 M ls 2 /(1+ k1 2 M ls 2 )] k k1 ( 2k M ls 2 k+1 + k1 k+1 ) 1 k1 .
P ex1 A sw k P ex2 k1 2 [ ( P rs,stag P ex2 ) k1 k 1] k 2 A ex k =0,
T stag * = T rs,stag (1+k M rs 2 ) 2 2(k+1) M rs 2 (1+ k1 2 M rs 2 ) ,

Metrics