Abstract

We design, fabricate and characterize sidewall corrugated Bragg gratings in a high confinement integrated optics lithium niobate platform, comprising submicrometric photonic wires, tapers and grating couplers to interface off-chip standard telecom optical fibers. We analyze the grating performance as band-rejection filter for TE-polarized signals in the telecom C-band, considering both rectangular and sinusoidal sidewall profiles, and demonstrate record extinction ratios as high as 27 dB and rejection bandwidths as narrow as 3 nm. The results show the potential for an efficient integration of novel photonic functionalities into low-footprint LiNbO3 nonlinear and electro-optical waveguide devices.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon grating coupler on a lithium niobate thin film waveguide

Zhihua Chen, Yiwen Wang, Honghu Zhang, and Hui Hu
Opt. Mater. Express 8(5) 1253-1258 (2018)

High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides

Jian Jian, Pengfei Xu, Hui Chen, Mingbo He, Zeru Wu, Lidan Zhou, Lin Liu, Chunchuan Yang, and Siyuan Yu
Opt. Express 26(23) 29651-29658 (2018)

Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector

Zhihua Chen, Ruihong Peng, Yiwen Wang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4010-4017 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Caucheteur, T. Guo, and J. Albert, “Polarization-Assisted Fiber Bragg Grating Sensors: Tutorial and Review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
    [Crossref]
  2. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  3. D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
    [Crossref] [PubMed]
  4. C. Klitis, G. Cantarella, M. J. Strain, and M. Sorel, “High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator,” Opt. Lett. 42(15), 3040–3043 (2017).
    [Crossref] [PubMed]
  5. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24(10), 685–687 (1999).
    [Crossref] [PubMed]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  7. M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
    [Crossref]
  8. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-Optical Signal Processing Using χ(2) Nonlinearities in Guided-Wave Devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  9. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref] [PubMed]
  10. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
    [Crossref] [PubMed]
  11. M. Picciau, G. Leo, and G. Assanto, “Versatile bistable gate based on quadratic cascading in a Bragg periodic structure,” J. Opt. Soc. Am. B 13(4), 661–670 (1996).
    [Crossref]
  12. C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
    [Crossref]
  13. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
    [Crossref]
  14. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
    [Crossref] [PubMed]
  15. B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
    [Crossref] [PubMed]
  16. C. Guyot, G. Ulliac, J. Dahdah, W. Qiu, M.-P. Bernal, F. Baida, and N. Courjal, “Optical characterization of ultra-short Bragg grating on lithium niobate ridge waveguide,” Opt. Lett. 39(2), 371–374 (2014).
    [Crossref] [PubMed]
  17. B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
    [Crossref]
  18. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  19. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  20. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  21. S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
    [Crossref]
  22. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
    [Crossref] [PubMed]
  23. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M. P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  24. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
    [Crossref]
  25. L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
    [Crossref]
  26. M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium Niobate on Insulator (LNOI) Grating Couplers,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), SW4I.7.
  27. M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  28. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref] [PubMed]
  29. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
    [Crossref] [PubMed]
  30. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  31. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
    [Crossref]
  32. J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
    [Crossref]

2017 (5)

2016 (3)

L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
[Crossref]

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (1)

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

2012 (3)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M. P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

2010 (2)

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (1)

2004 (2)

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[Crossref] [PubMed]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

2003 (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

2002 (1)

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

1999 (1)

1997 (1)

C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
[Crossref]

1996 (1)

1995 (1)

1992 (1)

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Aitchison, J. S.

Albert, J.

Andrade, N.

Assanto, G.

C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
[Crossref]

M. Picciau, G. Leo, and G. Assanto, “Versatile bistable gate based on quadratic cascading in a Bragg periodic structure,” J. Opt. Soc. Am. B 13(4), 661–670 (1996).
[Crossref]

Baghban, M. A.

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Baida, F.

Baida, F. I.

Benkelfat, B. E.

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Bernal, M. P.

Bernal, M.-P.

Bo, F.

Bosenberg, W. R.

Bowers, J. E.

Broderick, N. G. R.

Byer, R. L.

Cai, L.

L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
[Crossref]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Cantarella, G.

Caucheteur, C.

Collet, M.

Conti, C.

C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
[Crossref]

Courjal, N.

Dahdah, J.

Danner, A. J.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

Das, B. K.

Davenport, M.

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

De La Rue, R. M.

Denz, C.

Diziain, S.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Eckardt, R. C.

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-Optical Signal Processing Using χ(2) Nonlinearities in Guided-Wave Devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Ferriere, R.

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Gallo, K.

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Gao, F.

Geiss, R.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Guo, G.-C.

Guo, T.

Guyot, C.

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

He, Y.

Höfling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Hong, J.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Horn, W.

Hu, H.

L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

Huang, W.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Imbrock, J.

Jiang, H.

Jovanovic, N.

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Khurgin, J.

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Kip, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Kley, E.-B.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Klitis, C.

Krauss, T. F.

Kroesen, S.

Kumar, S.

Langrock, C.

Leo, G.

Li, J.

Li, W.

Liang, H.

Lin, Q.

Loncar, M.

Lu, H.

Luo, R.

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Makino, T.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Marshall, G. D.

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

McGeehan, J. E.

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Millar, P.

Mollier, P.

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Morton, P. A.

Myers, L. E.

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Nisar, M. S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Pan, A.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Pertsch, T.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Picciau, M.

Pierce, J. W.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Qiu, W.

Quiring, V.

Rabiei, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Ren, X.-F.

Richardson, D. J.

Ricken, R.

Rogers, S.

Runde, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Sadani, B.

Saha, S. S.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Schrempel, F.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Siew, S. Y.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

Smith, N.

Sohler, W.

Sorel, M.

Spencer, D. T.

Srinivasan, S.

Steel, M. J.

Stenger, V.

Strain, M. J.

Suche, H.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Trillo, S.

C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
[Crossref]

Tsang, M.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

Tünnermann, A.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Ulliac, G.

Venkataraman, V.

Wacogne, B.

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Wan, S.

Wang, C.

Wang, J.

Williams, R. J.

Willner, A. E.

Withford, M. J.

Xia, J.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Xiong, X.

Xu, J.

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Yuan, S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zhang, G.

Zhang, S.

L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
[Crossref]

Zhao, X.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

APL Photonics (1)

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

IEEE Photonics J. (1)

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, “Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange,” IEEE Photonics Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

L. Cai, S. Zhang, and H. Hu, “A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire,” J. Opt. 18(3), 035801 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Nature (1)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Opt. Express (8)

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
[Crossref] [PubMed]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
[Crossref] [PubMed]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M. P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

C. Conti, S. Trillo, and G. Assanto, “Doubly Resonant Bragg Simultons via Second-Harmonic Generation,” Phys. Rev. Lett. 78(12), 2341–2344 (1997).
[Crossref]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Other (2)

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium Niobate on Insulator (LNOI) Grating Couplers,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), SW4I.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of the fabrication process: (a) LNOI chip, as purchased; (b) Chromium (Cr) hard mask deposition; (c) Electron-beam resist spin-coating; (d) EBL and etching Cr hard mask by Cl2/O2 reactive ion etching; (e) Ar + ion milling of LN; (f) Cr mask removal by wet etch. The arrows illustrate the LN crystallographic axes (X, Y, Z).
Fig. 2
Fig. 2 (a) Schematic illustration of the fabricated devices, where LW is the total length of the nano-waveguide and LB the length of the Bragg grating. (b) Scanning electron microscope (SEM) image of a fabricated (relief) grating coupler with a period of ΛC = 1.24 µm and a duty cycle of 50%; (c) SEM image of a fabricated (sidewall) Bragg grating of period ΛB = 505 nm, sidewall corrugation Δw = 125 nm and average waveguide width w0 = 760 nm.
Fig. 3
Fig. 3 (a) Schematic illustration of the setup used for experiments; and (b) schematic side-view of employment of grating couplers with a period of ΛC = 1.24 µm for in- and out-coupling of optical signals.
Fig. 4
Fig. 4 (a) Optical fiber-to-fiber transmission measured at λ = 1550 nm for TE-polarized light, in 760 nm- (blue circles) and 2.35 µm-wide (red circles) LNOI waveguides. Dashed lines represent linear fittings performed on experimental data. (b) Spectral response of the fabricated grating couplers in the telecom range, obtained by simulations and experiments (dashed and solid lines, respectively).
Fig. 5
Fig. 5 Schematic top view illustration of Bragg gratings with (a) rectangular, and (b) sinusoidal-sidewall modulations. Normalized transmission curves obtained from measurements in the telecom range on 252.5 μm-long Bragg gratings with different waveguide width corrugations (Δw, color coding in the legend) for: (c) rectangular, and (d) sinusoidal grating profiles.
Fig. 6
Fig. 6 3dB bandwidth and extinction ratios experimentally obtained from Bragg reflectors with sinusoidal sidewall modulations, of length LB = 252.5 μm (squares) and LB = 505 μm (circles), as functions of the grating corrugation Δw.
Fig. 7
Fig. 7 Simulation results for Bragg gratings over a length of 252.5 μm for different waveguide width corrugations (Δw, color coding in the legend): (a-b) without propagation loss and (c-d) with propagation loss, for the rectangular (a,c) and the sinusoidal (b,d) grating structures of the experiments of Fig. 5.

Metrics