Abstract

We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping

Ori Katz, Jonathan M. Levitt, Eran Grinvald, and Yaron Silberberg
Opt. Express 18(22) 22693-22701 (2010)

Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1

A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus
J. Opt. Soc. Am. B 26(3) 559-563 (2009)

Fiber delivered probe for efficient CARS imaging of tissues

Mihaela Balu, Gangjun Liu, Zhongping Chen, Bruce J. Tromberg, and Eric O. Potma
Opt. Express 18(3) 2380-2388 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  2. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  4. I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
    [Crossref]
  5. H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
    [Crossref] [PubMed]
  6. G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
    [Crossref]
  7. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31(9), 1328–1330 (2006).
    [Crossref] [PubMed]
  8. H. N. Paulsen, K. M. Hilligse, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28(13), 1123–1125 (2003).
    [Crossref] [PubMed]
  9. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [Crossref]
  10. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
    [Crossref]
  11. S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
    [Crossref]
  12. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
    [Crossref] [PubMed]
  13. S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
    [Crossref] [PubMed]
  14. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
    [Crossref] [PubMed]
  15. H. Wang, T. B. Huff, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31(10), 1417–1419 (2006).
    [Crossref] [PubMed]
  16. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
    [Crossref] [PubMed]
  17. H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm− 1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [Crossref]
  18. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
    [Crossref]
  19. H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact and fully collinear light source for broadband multiplex CARS microscopy covering the fingerprint region,” Opt. Express 23(13), 17217–17222 (2015).
    [Crossref] [PubMed]
  20. S. R. Oh, D. Kang, J. Choi, J. H. Kim, H. Lee, K.-S. Kim, and S. Kim, “Supercontinuum notch shaping via fiber Bragg grating for the excitation source in coherent anti-stokes Raman spectroscopy,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2015), paper 26C23_27.
    [Crossref]
  21. S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
    [Crossref]
  22. M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20(23), 25624–25635 (2012).
    [Crossref] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  24. S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
    [Crossref] [PubMed]
  25. D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugžlys, E. E. Serebryannikov, A. Baltuška, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16(4), 2502–2507 (2008).
    [Crossref] [PubMed]
  26. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, A. Díez, and M. Andrés, “Femtosecond parabolic pulse shaping in normally dispersive optical fibers,” Opt. Express 21(15), 17769–17785 (2013).
    [Crossref] [PubMed]
  27. N. K. T. Photonics, “LMA fiber dispersion overview,” http://www.nktphotonics.com/laser-fibers/en/product/large-mode-area-photonic-crystal-fibers .
  28. “Search for species data by chemical name,” http://webbook.nist.gov/chemistry/name-ser.html .

2017 (1)

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

2015 (3)

2014 (1)

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref] [PubMed]

2013 (2)

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, A. Díez, and M. Andrés, “Femtosecond parabolic pulse shaping in normally dispersive optical fibers,” Opt. Express 21(15), 17769–17785 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (2)

2008 (2)

2006 (3)

2005 (3)

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm− 1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2003 (1)

2002 (2)

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

1996 (1)

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

1993 (1)

Andrés, M.

Andresen, E. R.

Baltuška, A.

Balu, M.

Baxter, G.

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

Birkedal, V.

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Boppart, S. A.

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref] [PubMed]

Chen, Z.

Cheng, J.-X.

H. Wang, T. B. Huff, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31(10), 1417–1419 (2006).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Cruz, C. H.

Dietzek, B.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Díez, A.

Dochow, S.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Drexler, W.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fernandez, A.

Fragnito, H. L.

Ganikhanov, F.

Grinvald, E.

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm− 1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Haub, J.

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

Hermann, B.

Hilligse, K. M.

Huff, T. B.

Iakushev, S. O.

Johnson, M.

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

Kalashyan, M.

Kamali, T.

Kano, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm− 1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Katz, O.

Keiding, S. R.

Kim, J. H.

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Kim, K.-S.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Kim, S.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Krafft, C.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Kumar, S.

Kwon, W. S.

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Larsen, J. J.

Latka, I.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Lee, E. S.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

Lee, J. Y.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

Lefort, C.

Légaré, F.

Levitt, J. M.

Levitte, J. M.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Liu, G.

Louradour, F.

Mansur, N. L.

Mansuryan, T.

Martínez-León, L.

Mikami, H.

Mouradian, L.

Müller, M.

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

Oh, S. R.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Orr, B.

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

Park, J. H.

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

Paulsen, H. N.

Planas, S. A.

Popp, J.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Potma, E. O.

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Považay, B.

Pugžlys, A.

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Schins, J. M.

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

Serebryannikov, E. E.

Shiozawa, M.

Shirai, M.

Shulika, O. V.

Sidorov-Biryukov, D. A.

Silberberg, Y.

Sukhoivanov, I. A.

Thøgersen, J.

Tromberg, B. J.

Tu, H.

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref] [PubMed]

Unterhuber, A.

Volkmer, A.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Wang, H.

Watanabe, K.

Werkmeister, R.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Zheltikov, A. M.

Zhu, L.

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm− 1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Chem. Phys. Lett. (1)

G. Baxter, M. Johnson, J. Haub, and B. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251(3-4), 211–218 (1996).
[Crossref]

J. Biophotonics (1)

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (3)

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Laser Photonics Rev. (1)

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development,” Laser Photonics Rev. 7(5), 698–731 (2013).
[Crossref]

Opt. Commun. (1)

S. R. Oh, J. H. Park, K.-S. Kim, E. S. Lee, J. Y. Lee, and S. Kim, “Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy,” Opt. Commun. 383, 107–112 (2017).
[Crossref]

Opt. Express (8)

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
[Crossref] [PubMed]

D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugžlys, E. E. Serebryannikov, A. Baltuška, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16(4), 2502–2507 (2008).
[Crossref] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
[Crossref] [PubMed]

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
[Crossref] [PubMed]

M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20(23), 25624–25635 (2012).
[Crossref] [PubMed]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, A. Díez, and M. Andrés, “Femtosecond parabolic pulse shaping in normally dispersive optical fibers,” Opt. Express 21(15), 17769–17785 (2013).
[Crossref] [PubMed]

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[Crossref] [PubMed]

H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact and fully collinear light source for broadband multiplex CARS microscopy covering the fingerprint region,” Opt. Express 23(13), 17217–17222 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

S. R. Oh, W. S. Kwon, J. H. Kim, K.-S. Kim, and S. Kim, “Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-stokes Raman spectroscopy,” Proc. SPIE 9355, 93550T (2015).
[Crossref]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

N. K. T. Photonics, “LMA fiber dispersion overview,” http://www.nktphotonics.com/laser-fibers/en/product/large-mode-area-photonic-crystal-fibers .

“Search for species data by chemical name,” http://webbook.nist.gov/chemistry/name-ser.html .

S. R. Oh, D. Kang, J. Choi, J. H. Kim, H. Lee, K.-S. Kim, and S. Kim, “Supercontinuum notch shaping via fiber Bragg grating for the excitation source in coherent anti-stokes Raman spectroscopy,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2015), paper 26C23_27.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Spectral features of single-pulse CARS with notch-shaped broadband pulses. (a) Assuming that the molecule has two vibrational modes ΩR1 and ΩR2, within the bandwidth of a pulsed laser, the dominant nonlinear polarization results in a form of blue-shifted electric field E(ω-ΩR) with its overall intensity being proportional the Raman strength G and the laser excitation amplitude A(ΩR). (b) The narrow notch in the pulsed laser is also blue-shifted by the vibrational level of the molecule. (c) The blue-shifted narrow notch produces the dip featured in a non-characteristic nonlinear polarization created in (a).
Fig. 2
Fig. 2 Experimental setup of the laser pulse fiber delivery. Pre-dispersion compensation was performed to obtain a transform-limited laser pulse at the distal end of optical fibers. We used two types of optical fiber (780HP fiber, LMA-20 fiber) to compare the spectral change between laser pulse delivery by the single-mode fiber and large-mode-area fiber. ND: neutral density filter; C-OBJ: coupling objective lens; FBG: fiber Bragg grating; SMF: single-mode fiber; and LMA fiber: large-mode-area fiber.
Fig. 3
Fig. 3 (a) Simulation results of spectral change after transmission through fibers. In the simulation condition of FBG (10 cm) and SMF (20 cm), spectral bandwidth reduced approximately 1/6 of the spectral bandwidth of the initial laser pulse (red line). In the case of notch-shaped laser pulse transmitted by FBG and LMA, a minimal amount of spectral narrowing is observed (blue and green line). (b) Experimental results of the spectral change of the laser pulses delivered by fibers. Initial laser pulse with a spectral bandwidth of 70 nm (black line) transmitted 10 cm of FBG (green line). In the case of FBG (10 cm) and SMF (20 cm), significant spectral narrowing occurred (red line). On the other hand, a minimal amount of spectral narrowing occurred that was delivered by FBG (10 cm) and LMA (20 cm) (blue line). The experimental results are in good agreement with the numerical simulation.
Fig. 4
Fig. 4 (a) Spectral data of the notch-shaped pulsed laser at the distal end of the fiber. The laser pulse with a spectral bandwidth of 60 nm and the narrowband notch shape at 790 nm was stably maintained. (b) Intensity autocorrelation and interferometric autocorrelation (inset) of notch-shaped laser pulse. The pulse width was about 30 fs (FWHM).
Fig. 5
Fig. 5 Experimental setup of single-pulse multiplex CARS microspectroscopy with a notch- shaped laser pulse delivered by optical fibers. The optical fiber consists of a FBG to serve as a narrowband notch filter and a combined LMA fiber to deliver such notch-shaped laser pulses without spectral distortion. For CARS imaging, raster scanning was enabled by adding a motorized stage at the sample position. Backscattered CARS signals from the raster-scanned sample are collected by a multimode optical fiber.
Fig. 6
Fig. 6 (a) CARS signals of various samples. For the notch location at 790 nm, the dip features appear at 743.5 nm (acetone), 742 nm (isopropyl alcohol), and 738.5 nm (ethanol). (b) Normalized CARS signals. For the notch location at 790 nm (12658 cm-1), the CARS features are shown and correspond to Raman frequencies at 790 cm-1 (acetone), 819 cm-1 (isopropyl alcohol), and 880 cm-1 (ethanol).
Fig. 7
Fig. 7 (a) Backward detected CARS spectra of poly(methyl methacrylate) beads embedded in agarose gel. Poly(methyl methacrylate), showing two dip features at 742.5 nm and 733.5 nm (black line). Since the notch location is 790 nm (12658 cm−1), the dips at 742.5 nm (13449 cm−1) and 734 nm (13623 cm−1) indicate that the Raman modes occur at 810 cm−1 and 965 cm−1. On the other hand, agarose gel shows no Raman lines in the detected range (red line). (b) Bright field image and (c) backward CARS image of poly(methyl methacrylate) beads (diameter: 5~15 µm) embedded in agarose gel. The scale bar is 20 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P CARS (3) (ω)=G 0 [E(ωΩ)/{( Ω R Ω)+iΓ}]A( Ω)dΩ,

Metrics