K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

D. Guo, M. Wang, and H. Hao, “Self-mixing grating interferometer: theoretical analysis and experimental observations,” Proc. SPIE 9960, 996019 (2016).

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).

D. Guo and M. Wang, “Note: Design of a laser feedback interferometer with double diffraction system,” Rev. Sci. Instrum. 86(9), 096111 (2015).

[PubMed]

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 104–111 (2014).

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

W. Xia, M. Wang, Z. Yang, W. Guo, H. Hao, and D. Guo, “High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation,” Appl. Opt. 52(4), B52–B59 (2013).

[PubMed]

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

T. Bosch and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40(1), 20–27 (2001).

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).

T. Bosch and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40(1), 20–27 (2001).

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 104–111 (2014).

M. T. Fathi and S. Donati, “Thickness measurement of transparent plates by a self-mixing interferometer,” Opt. Lett. 35(11), 1844–1846 (2010).

[PubMed]

T. Bosch and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40(1), 20–27 (2001).

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).

D. Guo, M. Wang, and H. Hao, “Self-mixing grating interferometer: theoretical analysis and experimental observations,” Proc. SPIE 9960, 996019 (2016).

D. Guo and M. Wang, “Note: Design of a laser feedback interferometer with double diffraction system,” Rev. Sci. Instrum. 86(9), 096111 (2015).

[PubMed]

W. Xia, M. Wang, Z. Yang, W. Guo, H. Hao, and D. Guo, “High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation,” Appl. Opt. 52(4), B52–B59 (2013).

[PubMed]

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

D. Guo, M. Wang, and H. Hao, “Self-mixing grating interferometer: theoretical analysis and experimental observations,” Proc. SPIE 9960, 996019 (2016).

W. Xia, M. Wang, Z. Yang, W. Guo, H. Hao, and D. Guo, “High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation,” Appl. Opt. 52(4), B52–B59 (2013).

[PubMed]

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 104–111 (2014).

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

K. Zhu, B. Guo, Y. Lu, S. Zhang, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729–735 (2017).

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).

[PubMed]

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

D. Guo, M. Wang, and H. Hao, “Self-mixing grating interferometer: theoretical analysis and experimental observations,” Proc. SPIE 9960, 996019 (2016).

D. Guo and M. Wang, “Note: Design of a laser feedback interferometer with double diffraction system,” Rev. Sci. Instrum. 86(9), 096111 (2015).

[PubMed]

W. Xia, M. Wang, Z. Yang, W. Guo, H. Hao, and D. Guo, “High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation,” Appl. Opt. 52(4), B52–B59 (2013).

[PubMed]

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50(26), 5064–5072 (2011).

[PubMed]

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50(26), 5064–5072 (2011).

[PubMed]

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).

K. Zhu, B. Guo, Y. Lu, S. Zhang, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729–735 (2017).

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).

[PubMed]

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50(26), 5064–5072 (2011).

[PubMed]

F. Cheng and K. C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt. 50(22), 4550–4556 (2011).

[PubMed]

W. Xia, M. Wang, Z. Yang, W. Guo, H. Hao, and D. Guo, “High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation,” Appl. Opt. 52(4), B52–B59 (2013).

[PubMed]

Y. Tan, S. Zhang, C. Xu, and S. Zhao, “Inspecting and locating foreign body in biological sample by laser confocal feedback technology,” Appl. Phys. Lett. 103(10), 101909 (2013).

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 104–111 (2014).

S. Zhang, S. Zhang, L. Sun, and Y. Tan, “Spectrum broadening in optical frequency-shifted feedback of microchip laser,” IEEE Photonics Technol. Lett. 28(14), 1593–1596 (2016).

C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281(9), 2582–2589 (2008).

T. Bosch and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40(1), 20–27 (2001).

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).

D. Guo, M. Wang, and H. Hao, “Self-mixing grating interferometer: theoretical analysis and experimental observations,” Proc. SPIE 9960, 996019 (2016).

D. Guo and M. Wang, “Note: Design of a laser feedback interferometer with double diffraction system,” Rev. Sci. Instrum. 86(9), 096111 (2015).

[PubMed]

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).

[PubMed]

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensor Actuat. A-Phys. 137(1), 185–191 (2007).

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, and L. Su, “A Fiber-Coupled Self-Mixing Laser Diode for the Measurement of Young’s Modulus,” Sensors (Basel) 16(6), 928 (2016).

[PubMed]

C. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

S. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (John Wiley and Sons, 2013).