Abstract

High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband microfiber-coupled superconducting single-photon detector

Xintong Hou, Ni Yao, Lixing You, Hao Li, Yong Wang, Weijun Zhang, Heqing Wang, Xiaoyu Liu, Wei Fang, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 27(18) 25241-25250 (2019)

Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency

Hao Li, Lu Zhang, Lixing You, Xiaoyan Yang, Weijun Zhang, Xiaoyu Liu, Sijing Chen, Zhen Wang, and Xiaoming Xie
Opt. Express 23(13) 17301-17308 (2015)

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai
Opt. Express 22(18) 21167-21174 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
  2. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
  3. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
  4. L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).
  5. Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
  6. T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
    [PubMed]
  7. K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).
  8. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
  9. W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [PubMed]
  10. K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).
  11. A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
    [PubMed]
  12. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [PubMed]
  13. Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).
  14. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [PubMed]
  15. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
  16. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
  17. J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).
  18. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [PubMed]
  19. T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).
  20. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

2017 (3)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

2016 (5)

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

2015 (2)

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[PubMed]

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

2014 (1)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

2013 (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[PubMed]

2012 (3)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

2011 (1)

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

2006 (1)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[PubMed]

Alaee, R.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Berggren, K. K.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

Bulgarini, G.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Dauler, E. A.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

Diewald, S.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Divochiy, A. V.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Dobrovolskiy, S.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Dorenbos, S. N.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Fang, W.

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

Ferrari, S.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

Fujiwara, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Gérard, J. M.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Goltsman, G. N.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Guo, X.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

Hadfield, R. H.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Hoffman, J. E.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Huang, J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Ikuta, R.

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

Imoto, N.

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

Inoue, S. i.

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

Kahl, O.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Karpova, U. V.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

Kerman, A. J.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

Kirkwood, R. A.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Korneev, A.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Kovalyuk, V.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Li, H.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Li, M.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Liu, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Liu, X. Y.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Lou, J. Y.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

Lv, C.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Lv, C. L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Miki, S.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Minaeva, O.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Monroy, E.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Morozov, P. V.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Orozco, L. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Pernice, W. H.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Pernice, W. H. P.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

Qiu, W.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Rath, P.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Ravets, S.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Redaelli, L.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

Rockstuhl, C.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Sasaki, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[PubMed]

Schuck, C.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Seleznev, V. A.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Sergienko, A. V.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Sidorova, M. V.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Smirnov, K. V.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Tang, H. X.

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Terai, H.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[PubMed]

Tong, L.

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Tong, L. M.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

Vakhtomin, Y. B.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Vetter, A.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Vodolazov, D. Y.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Waki, K.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

Wang, Y.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Wang, Z.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Wu, J.

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

Wu, J. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Xie, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Xie, X. M.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Xu, Y.

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

Xu, Y. X.

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Yamamoto, T.

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

Yamashita, T.

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Yang, J. K. W.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

You, L.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

You, L. X.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[PubMed]

Zhang, L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Zhang, W.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

Zhang, W. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Zhou, H.

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Zi, F.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

Zotova, A. N.

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

Zwiller, V.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

AIP Adv. (1)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).

Appl. Phys. Lett. (3)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).

K. V. Smirnov, A. V. Divochiy, Y. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Y. Vodolazov, “Rise time of voltage pulses in NbN superconducting single photon detectors,” Appl. Phys. Lett. 109, 705–3040 (2016).

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).

IEEE Trans. Appl. Supercond. (3)

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

K. Waki, T. Yamashita, S. i. Inoue, S. Miki, H. Terai, R. Ikuta, T. Yamamoto, and N. Imoto, “Fabrication and characterization of superconducting nanowire single-photon detectors on Si waveguide,” IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Performances of fiber-coupled superconducting nanowire single-photon detectors measured at ultralow temperature,” IEEE Trans. Appl. Supercond. 21, 336–339 (2011).

Nano Lett. (1)

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16(11), 7085–7092 (2016).
[PubMed]

Nat. Commun. (2)

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[PubMed]

W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[PubMed]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[PubMed]

Opt. Commun. (3)

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).

Opt. Express (1)

Sci. China Phys. Mech. (1)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).

Sci. Rep. (1)

T. Yamashita, K. Waki, S. Miki, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers,” Sci. Rep. 6, 35240 (2016).
[PubMed]

Supercond. Sci. Technol. (2)

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29, 065016 (2016).

J. J. Wu, L. X. You, L. Zhang, W. J. Zhang, H. Li, X. Y. Liu, H. Zhou, Z. Wang, X. M. Xie, and Y. X. Xu, “NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate,” Supercond. Sci. Technol. 29, 065011 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of MF-coupled SNSPD. The red light represents light absorbed by the superconducting nanowires. The adhesive used is not shown in this figure for the sake of clarity.
Fig. 2
Fig. 2 Schematic of the coupling process: (a) Placing of a sample in the chamber; (b) Aligning the MF to the nanowires; (c) Adhesive addition; (d) Adhesive curing; (e) Secondary adhesive addition and curing; (f) Removal of the MF from the glass slide.
Fig. 3
Fig. 3 Simulated profiles of the TE and TM modes for different fiber diameters on a blank MgF2 substrate.
Fig. 4
Fig. 4 (a) An optical image of a MF-coupled SNSPD. (b) An optical image of the nanowires without any MFs or adhesive. The inset image on the top right corner is the SEM image of the nanowires (with red false color). (c) SDE and DCR values obtained as functions of the normalized bias current (Ib/Isw) for two MF-coupled SNSPDs at a wavelength of 1550nm.
Fig. 5
Fig. 5 (a) SDE as functions of different bias currents for device 2# at different wavelengths. (b) Saturated SDE values at different wavelengths. The hollow circle corresponds to the SDE value calculated using stimulation results.

Tables (1)

Tables Icon

Table 1 Transmitted power of MF-coupled SNSPDs and the calculated absorptance of the nanowires.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η m =1 1 A × P m i n P 0
α = 2 × Im ( 2 π λ × n e f f )
η t h e o = 1 e α L

Metrics