Abstract

In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scaling two-dimensional photonic crystals for transformation optics

Zixian Liang and Jensen Li
Opt. Express 19(18) 16821-16829 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [PubMed]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [PubMed]
  6. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [PubMed]
  8. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).
  9. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [PubMed]
  10. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [PubMed]
  11. Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).
  12. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [PubMed]
  13. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
    [PubMed]
  14. J. Pendry, “All smoke and metamaterials,” Nature 460, 579–580 (2009).
  15. C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).
  16. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
    [PubMed]
  17. H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).
  18. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
  19. C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
    [PubMed]
  20. H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).
  21. G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).
  22. C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).
  23. Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).
  24. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
    [PubMed]
  25. J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).
  26. B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).
  27. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
    [PubMed]
  28. Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
    [PubMed]

2016 (4)

C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[PubMed]

2015 (3)

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

2014 (2)

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

2011 (1)

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

2010 (2)

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

2009 (5)

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

J. Pendry, “All smoke and metamaterials,” Nature 460, 579–580 (2009).

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[PubMed]

2008 (4)

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[PubMed]

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[PubMed]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

Bai, G. D.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

Bai, P.

C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).

Burokur, S. N.

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

Chan, C. T.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[PubMed]

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

Chen, H.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[PubMed]

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[PubMed]

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

Cui, T. J.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

de Lustrac, A.

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

Fang, G.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Fang, N. X.

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

Gu, Y.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

Han, D.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

Hang, Z. H.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Hao, R.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

Hou, B.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Jiang, W. X.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

Jing, Y.

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

Lai, Y.

C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[PubMed]

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

Li, C.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Li, E.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

Li, F.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[PubMed]

Liu, C.

C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Lu, W.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Luo, J.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[PubMed]

Luo, X.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[PubMed]

Ma, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[PubMed]

Ma, K.

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

Madni, H. A.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

Mei, Z. L.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

Meng, X.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

Ng, J.

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

Pendry, J.

J. Pendry, “All smoke and metamaterials,” Nature 460, 579–580 (2009).

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[PubMed]

Shen, C.

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

Smith, D. R.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

Tichit, P.

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

Wang, G.

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Xiao, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

Xu, H.

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

Xu, J.

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

Yang, F.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

Yang, T.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[PubMed]

Yang, Y.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Yao, Z.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[PubMed]

Yi, J.

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

Zhang, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

Zhang, Z.

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

Zhang, Z. Q.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Zheng, B.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

Zheng, H.

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

Adv. Opt. Mater. (1)

H. Xu, G. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2, 572–580 (2014).

Appl. Phys. Lett. (2)

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107, 153503 (2015).

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).

EPL (1)

C. Liu, P. Bai, and Y. Lai, “Sound-impenetrable holes in water based on acoustic complementary medium,” EPL 115, 58002 (2016).

Front. Phys. China (1)

Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China 5, 308–318 (2010).

IEEE T. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47, 2075–2084 (1999).

J. Appl. Phys. (1)

J. Yi, P. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117, 084903 (2015).

J. Opt. (1)

Y. Lai, H. Zheng, Z. Zhang, and C. T. Chan, “Manipulating sources using transformation optics with ‘folded geometry’,” J. Opt. 13, 024009 (2011).

Light Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5, e16177 (2016).

Nature (1)

J. Pendry, “All smoke and metamaterials,” Nature 460, 579–580 (2009).

New J. Phys. (1)

H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10, 113016 (2008).

Opt. Express (1)

Opt. Lett. (2)

Photon. Nanostructures (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6, 87–95 (2008).

Phys. Rev. Lett. (7)

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[PubMed]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[PubMed]

Phys. Rev. X (1)

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Upper inset: the EFCs of air (gray solid lines) and TO medium obtained by stretching air in the x direction (blue solid lines). Lower inset: the scheme of forming the TO medium slab (with loose mesh) in the background medium of air (with dense mesh). (b) Upper: the EFC of the 1D ultratransparent PhCs (red solid lines), which has the same shape of the EFC of the TO media (blue dashed lines), but shifted in the k x direction. Lower inset: the 1D ultratransparent PhCs are used to replace the TO medium slab in (a).
Fig. 2
Fig. 2 (a) Schematic graph and related parameters of the unit cell of the designed 1D ultratransparent PhC. (b) The EFCs of the PhC in the second band for TE polarization. The red solid line and blue dashed line denote the EFCs of the PhC and the TO medium at the normalized frequency f a / c = 0.402 , respectively. (c) Incident angle-dependent transmittance for waves propagating through the PhC slab composed of n ( = 4, 5, 6, 15) unit cells at f a / c = 0.402 . [(d), (e)] The snapshot of electric fields for wave propagating through a TO medium slab (upper inset) and a PhC slab (lower inset) under an incident angle of 45°. The thickness of the TO medium slab is (d) 5 a , (e) 6 a . And the number of unit cells of the PhC slab is (d) 5, (e) 6.
Fig. 3
Fig. 3 Schematic graph of coordinate transformation from (a) an air cylinder to [(b)-(d)] core-shell structured cylinders composed of (b) gradient TO media, (c) discretized TO media and (d) 1D ultratransparent PhCs. (e) The parameters of the discretized layers A, B, C and D in (c), and parameters of the unit cells of the PhCs in (d).
Fig. 4
Fig. 4 Snapshots of electric fields for a TE polarized Gaussian beam scattered by (a) a PEC cylinder with R = 4 a , (b) a PEC cylinder with R = 4 a coated by the TO medium shell, (c) a PEC cylinder with R = 4 a coated by the 1D PhC shell, and (d) a PEC cylinder with R = 6.5 a .
Fig. 5
Fig. 5 Snapshots of electric fields radiated by a TE polarized monopolar point source placed (a) in the core of a PhC shell, (b) in the background medium of air. The offset distance of the source from the center is (a) d ' = 1.6 a , (b) d ' ' = 2.6 a . The sources in (a) and (b) have opposite phases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε z = 1 / μ x = μ y = 1 / s
d ' ' / d ' = R 2 / R 3 , 0 d ' R 2 .

Metrics