Abstract

In this paper, the photocatalytic activity enhancement of TiO2 thin films was realized by laser irradiation. The H2 yield of the as-irradiated film is 79 μmol/(h*m2), which is 33% more than that of the as-deposited TiO2 film. Spectrophotometer, X-ray diffraction and Raman system were employed to characterize the samples. The results showed that both the scanning rate and line spacing of the laser modification have effects on photocatalytic activity. It suggests that a phase junction is formed between the amorphous and rutile phases. The increment of H2 generation could be attributed to the alignment of Fermi levels in the phase junction.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities

Hua Li, Enzhou Liu, Jun Fan, Xiaoyun Hu, Jun Wan, Lin Sun, and Yang Hu
Appl. Opt. 55(2) 221-227 (2016)

Fabrication of TiO2 thin films with both anatase and rutile structures together using the ion-implantation method

Yu-Jie Ma, Fei Lu, Bing-Xi Xiang, Jin-Lai Zhao, and Shuang-Chen Ruan
Opt. Mater. Express 8(3) 532-540 (2018)

Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity

Han Zhou, Tongxiang Fan, Jian Ding, Di Zhang, and Qixin Guo
Opt. Express 20(S2) A340-A350 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy 35, 7416–7426 (2010).
  2. S. Ahmed and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” Int. J. Hydrogen Energy 26, 291–301 (2001).
  3. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [PubMed]
  4. S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).
  5. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).
  6. X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107(7), 2891–2959 (2007).
    [PubMed]
  7. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
    [PubMed]
  8. V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).
  9. M. Stodolny and M. Laniecki, “Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting,” Catal. Today 142, 314–319 (2009).
  10. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
    [PubMed]
  11. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
    [PubMed]
  12. Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).
  13. J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
    [PubMed]
  14. K. Sayama and H. Arakawa, “Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension,” J. Chem. Soc. Chem. Commun. 2, 150–152 (1992).
  15. R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).
  16. G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
    [PubMed]
  17. Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
    [PubMed]
  18. G. A. Samara and P. S. Peercy, “Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile),” Phys. Rev. B 7, 1131–1148 (1973).
  19. C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).
  20. K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).
  21. J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
    [PubMed]
  22. X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
    [PubMed]

2017 (1)

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

2016 (1)

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

2015 (1)

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

2014 (1)

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

2013 (2)

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).

2011 (1)

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

2010 (2)

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy 35, 7416–7426 (2010).

2009 (2)

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

M. Stodolny and M. Laniecki, “Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting,” Catal. Today 142, 314–319 (2009).

2008 (1)

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

2007 (2)

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107(7), 2891–2959 (2007).
[PubMed]

2006 (1)

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

2003 (1)

V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).

2001 (3)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

S. Ahmed and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” Int. J. Hydrogen Energy 26, 291–301 (2001).

K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).

1992 (1)

K. Sayama and H. Arakawa, “Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension,” J. Chem. Soc. Chem. Commun. 2, 150–152 (1992).

1973 (1)

G. A. Samara and P. S. Peercy, “Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile),” Phys. Rev. B 7, 1131–1148 (1973).

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[PubMed]

Ahmed, S.

S. Ahmed and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” Int. J. Hydrogen Energy 26, 291–301 (2001).

An, H.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Aoki, K.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Arakawa, H.

K. Sayama and H. Arakawa, “Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension,” J. Chem. Soc. Chem. Commun. 2, 150–152 (1992).

Asahi, R.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Azad, A. K.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Bahnemann, D. W.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Balat, H.

H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy 35, 7416–7426 (2010).

Borchardt, D.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Chen, A.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Chen, R.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Chen, X.

X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107(7), 2891–2959 (2007).
[PubMed]

Chenthamarakshan, C. R.

K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).

Chiarello, G. L.

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

Chong, R.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Chung, C. K.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Dai, Y.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Di Paola, A.

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

Dong, W. H.

V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).

Dowden, P.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Enriquez, E.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Fan, F.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Fang, Y.

Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).

Feng, P.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Feng, Z.

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Fitzmorris, R. C.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[PubMed]

Gao, Y.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Geissen, S. U.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Han, H.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Hidalgo, M. C.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[PubMed]

Huang, B.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Jaroniec, M.

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

Jia, Q.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Kirtay, E.

H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy 35, 7416–7426 (2010).

Kotula, P. G.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Krumpelt, M.

S. Ahmed and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” Int. J. Hydrogen Energy 26, 291–301 (2001).

Laniecki, M.

M. Stodolny and M. Laniecki, “Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting,” Catal. Today 142, 314–319 (2009).

Lee, J. S.

V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).

Leung, D. Y. C.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

Leung, M. K. H.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

Li, C.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Li, M.

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Li, R.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Li, Y.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Li, Z.

Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).

Lin, S. L.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Lu, P.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Lu, X.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Lung, H. F.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Luo, Y.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Mao, S. S.

X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107(7), 2891–2959 (2007).
[PubMed]

Mi, Y.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Morikawa, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Murugesan, V.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Ni, M.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

Ohwaki, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Palmisano, L.

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

Peercy, P. S.

G. A. Samara and P. S. Peercy, “Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile),” Phys. Rev. B 7, 1131–1148 (1973).

Prasankumar, R. P.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Qian, F.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Qiao, S. Z.

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

Rajeshwar, K.

K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).

Ran, J.

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

Reddy, V. R.

V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).

Sakthivel, S.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Samara, G. A.

G. A. Samara and P. S. Peercy, “Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile),” Phys. Rev. B 7, 1131–1148 (1973).

Sayama, K.

K. Sayama and H. Arakawa, “Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension,” J. Chem. Soc. Chem. Commun. 2, 150–152 (1992).

Selli, E.

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

Sobo, A.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Stodolny, M.

M. Stodolny and M. Laniecki, “Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting,” Catal. Today 142, 314–319 (2009).

Sumathy, K.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

Tacconi, N. R. D.

K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).

Taga, Y.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Tan, T. K.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Taylor, A. J.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Thompson, J. D.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Tu, K. Z.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Vogelpohl, A.

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Wang, G.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Wang, H. Y.

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Wang, L.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Wang, X.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Weng, Y.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Wolcott, A.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Wu, T.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Xu, H.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Xu, Q.

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Xu, S.

Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).

Yan, P.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Yang, X.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Yarotski, D. A.

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Yu, J.

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

Zhang, J.

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Zhang, J. Z.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

Zhang, Z.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Zhou, X.

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Zhu, J.

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Zuo, F.

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angew. Chem. Int. Ed. Engl. 47(9), 1766–1769 (2008).
[PubMed]

Appl. Catal. B (1)

S. Sakthivel, M. C. Hidalgo, D. W. Bahnemann, S. U. Geissen, V. Murugesan, and A. Vogelpohl, “A fine route to tune the photocatalytic activity of TiO2,” Appl. Catal. B 63, 31–40 (2006).

Appl. Phys., A Mater. Sci. Process. (1)

C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys., A Mater. Sci. Process. 113, 501–507 (2013).

Catal. Today (1)

M. Stodolny and M. Laniecki, “Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting,” Catal. Today 142, 314–319 (2009).

Chem. Mater. (1)

K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 32, 2765–2782 (2001).

Chem. Rev. (1)

X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107(7), 2891–2959 (2007).
[PubMed]

Chem. Soc. Rev. (1)

J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev. 43(22), 7787–7812 (2014).
[PubMed]

Energy Environ. Sci. (1)

R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, and C. Li, “Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases,” Energy Environ. Sci. 8, 2377–2382 (2015).

Int. J. Hydrogen Energy (2)

H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy 35, 7416–7426 (2010).

S. Ahmed and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” Int. J. Hydrogen Energy 26, 291–301 (2001).

J. Am. Chem. Soc. (1)

F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” J. Am. Chem. Soc. 132(34), 11856–11857 (2010).
[PubMed]

J. Chem. Soc. Chem. Commun. (1)

K. Sayama and H. Arakawa, “Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension,” J. Chem. Soc. Chem. Commun. 2, 150–152 (1992).

J. Phys. Chem. Lett. (1)

Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, and C. Li, “Directly Probing Charge Separation at Interface of TiO2 Phase Junction,” J. Phys. Chem. Lett. 8(7), 1419–1423 (2017).
[PubMed]

Korean J. Chem. Eng. (1)

V. R. Reddy, W. H. Dong, and J. S. Lee, “Photocatalytic water splitting over ZrO2 prepared by precipitation method,” Korean J. Chem. Eng. 20, 1026–1029 (2003).

Mater. Lett. (1)

Z. Li, Y. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Mater. Lett. 93, 345–348 (2013).

Nano Lett. (2)

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 9(6), 2331–2336 (2009).
[PubMed]

X. Lu, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P. G. Kotula, A. K. Azad, D. A. Yarotski, R. P. Prasankumar, A. J. Taylor, J. D. Thompson, and Q. Jia, “Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2,” Nano Lett. 16(9), 5751–5755 (2016).
[PubMed]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[PubMed]

Photochem. Photobiol. Sci. (1)

G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, “Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen,” Photochem. Photobiol. Sci. 10(3), 355–360 (2011).
[PubMed]

Phys. Rev. B (1)

G. A. Samara and P. S. Peercy, “Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile),” Phys. Rev. B 7, 1131–1148 (1973).

Renew. Sustain. Energy Rev. (1)

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev. 11, 401–425 (2007).

Science (1)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Preliminary Experiment: (a) Schematic drawing of the relationship between laser scanning rate and localized temperature on film. (b) XRD spectra, (c)Raman spectra and (d) Absorption spectra of samples which were irradiated by a CO2 laser under different scanning rates. (e) Photocatalytic decomposition rate for the methylene blue of the TiO2 films.
Fig. 2
Fig. 2 Formal Experiment: (a) Schematic drawing of the mixed phase junction and the carrier migration. The difference of laser beam spot size and line spacing determines the junction activity and amount. (b) XRD patterns of the samples with different line spacing (LS).
Fig. 3
Fig. 3 Confocal microscopy pictures of samples with different line spacing (LS). (a) LS = 0.2 mm, (b) LS = 0.03 mm, (c) LS = 0.05 mm, and (d) LS = 0.1 mm.
Fig. 4
Fig. 4 (a) The H2 generation under UV-light irradiation as a function of time with different line spacing (LS). (b) The calculated H2 generation per hour per square meter.
Fig. 5
Fig. 5 The schematic of photo-generated electrons and holes migration in phase junction of the TiO2 thin film.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( h υ ) = A ( h υ E g ) 2

Metrics