Abstract

We examined the performance of a potassium diode pumped alkali laser (K DPAL) using He, Ar, CH4, C2H6 and a mixture of He and CH4 as a buffer gas to provide spin-orbit mixing of the 4P3/2 and 4P1/2 states of Potassium atoms. We found that pure helium cannot be used as an efficient buffer gas for continuous wave lasing without using a flowing system with a considerable flow speed of about 100 m/s. In contrast, using a small amount of methane (10-20 Torr) mixed with helium, continuous wave lasing can be achieved using very moderate flow speeds of about 1 m/s.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient potassium diode pumped alkali laser operating in pulsed mode

Boris V. Zhdanov, Matthew D. Rotondaro, Michael K. Shaffer, and Randall J. Knize
Opt. Express 22(14) 17266-17270 (2014)

Dependence of static K DPAL performance on addition of methane to He buffer gas: 3D CFD modeling and comparison with experimental results

Karol Waichman, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 36(12) 3464-3470 (2019)

Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
  2. J. Ciuryelo and L. Krause, “42P1/2 → 42P3/2 mixing in potassium induced in collisions with noble gas atoms,” J. Quant. Spectrosc. Radiat. Transf. 28, 457–461 (1982).
  3. J. Ciuryelo and L. Krause, “42P fine-structure mixing in potassium by collisions with N2, H2, CO, and CH4,” J. Quant. Spectrosc. Radiat. Transf. 29(1), 57–60 (1983).
  4. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in Alkali Lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [PubMed]
  5. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).
  6. M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

2017 (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

2016 (2)

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

2011 (1)

1983 (1)

J. Ciuryelo and L. Krause, “42P fine-structure mixing in potassium by collisions with N2, H2, CO, and CH4,” J. Quant. Spectrosc. Radiat. Transf. 29(1), 57–60 (1983).

1982 (1)

J. Ciuryelo and L. Krause, “42P1/2 → 42P3/2 mixing in potassium induced in collisions with noble gas atoms,” J. Quant. Spectrosc. Radiat. Transf. 28, 457–461 (1982).

Ciuryelo, J.

J. Ciuryelo and L. Krause, “42P fine-structure mixing in potassium by collisions with N2, H2, CO, and CH4,” J. Quant. Spectrosc. Radiat. Transf. 29(1), 57–60 (1983).

J. Ciuryelo and L. Krause, “42P1/2 → 42P3/2 mixing in potassium induced in collisions with noble gas atoms,” J. Quant. Spectrosc. Radiat. Transf. 28, 457–461 (1982).

Guild, E. M.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Hostutler, D. A.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in Alkali Lasers,” Opt. Express 19(8), 7894–7902 (2011).
[PubMed]

Krause, L.

J. Ciuryelo and L. Krause, “42P fine-structure mixing in potassium by collisions with N2, H2, CO, and CH4,” J. Quant. Spectrosc. Radiat. Transf. 29(1), 57–60 (1983).

J. Ciuryelo and L. Krause, “42P1/2 → 42P3/2 mixing in potassium induced in collisions with noble gas atoms,” J. Quant. Spectrosc. Radiat. Transf. 28, 457–461 (1982).

Moran, P. J.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Olike, B. Q.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Pitz, G. A.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in Alkali Lasers,” Opt. Express 19(8), 7894–7902 (2011).
[PubMed]

Stalnake, D. M.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Townsend, S. W.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in Alkali Lasers,” Opt. Express 19(8), 7894–7902 (2011).
[PubMed]

J. Directed Energy (1)

M. D. Rotondaro, B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane,” J. Directed Energy 6(2), 182–186 (2016).

J. Quant. Spectrosc. Radiat. Transf. (2)

J. Ciuryelo and L. Krause, “42P1/2 → 42P3/2 mixing in potassium induced in collisions with noble gas atoms,” J. Quant. Spectrosc. Radiat. Transf. 28, 457–461 (1982).

J. Ciuryelo and L. Krause, “42P fine-structure mixing in potassium by collisions with N2, H2, CO, and CH4,” J. Quant. Spectrosc. Radiat. Transf. 29(1), 57–60 (1983).

Opt. Express (1)

Proc. SPIE (2)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” Proc. SPIE 9990, 99900C (2017).

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The diagram of the experimental setup.
Fig. 2
Fig. 2 Refillable alkali static cell
Fig. 3
Fig. 3 Output power of K DPAL pumped by 30 µs pulses using He, ethane and methane buffer gasses at a total pressure of 500 Torr
Fig. 4
Fig. 4 Fluorescence signal from the potassium 52P states. The population of the 52P state is significantly reduced when methane is added to the buffer gas. Pump pulses duration in this experiment was 250µs
Fig. 5
Fig. 5 Fluorescence intensity from the potassium 52P state (a) and lasing power (b) vs. methane partial pressure (He added to methane at a total pressure of 600 torr). Pump pulses duration in this experiment was 50 ms.
Fig. 6
Fig. 6 K DPAL pumped by 250 µs pulses for pure helium, pure methane and mixed helium and methane buffer gasses.
Fig. 7
Fig. 7 Time resolved pump and the potassium 52P fluorescence pulses using 200 Torr helium (a) and argon (b) buffer gasses.
Fig. 8
Fig. 8 K DPAL output power with 100 ms pulses using helium, methane and a mixed case.

Tables (1)

Tables Icon

Table 1 Cross sections for 2P1/22P3/2 excitation transfer (in Å2) induced by alkali – buffer gas collisions

Metrics