Abstract

A resonator is characterized with two cascaded arrayed waveguide gratings (AWGs) in a ring formation. From this structure, the on-chip transmittance of a single AWG is extracted, independent of coupling efficiency. It provides improved measurement accuracy, which is essential for developing AWGs with extremely low loss. Previous methods normalize the off-chip AWG transmittance to that of a reference waveguide with identical coupling, leading to an uncertainty of ∼14 % on the extracted on-chip AWG transmittance. It is shown here that the proposed “AWG-ring” method reduces this value to ∼3 %. A low-loss silicon AWG and an AWG-ring are fabricated. Channel losses with <2 dB are found, with a crosstalk per channel approaching −30 dB. Such an efficient wavelength multiplexing device is beneficial for the integration of spectroscopic sensors, multi-spectral lasers, and further progress in optical communication systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-crosstalk Si arrayed waveguide grating with parabolic tapers

Tong Ye, Yunfei Fu, Lei Qiao, and Tao Chu
Opt. Express 22(26) 31899-31906 (2014)

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers
Opt. Express 19(15) 14130-14136 (2011)

Silicon arrayed waveguide gratings at 2.0-μm wavelength characterized with an on-chip resonator

Eric J. Stanton, Nicolas Volet, and John E. Bowers
Opt. Lett. 43(5) 1135-1138 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
    [Crossref]
  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
    [Crossref]
  3. C. Dragone, “An N × N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
    [Crossref]
  4. K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
    [Crossref]
  5. M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
    [Crossref]
  6. P. Cheben, J. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
    [Crossref] [PubMed]
  7. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17, 16216–16224 (2009).
    [Crossref] [PubMed]
  8. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
    [Crossref] [PubMed]
  9. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21, 16648–16656 (2013).
    [Crossref] [PubMed]
  10. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
    [Crossref]
  11. A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
    [Crossref]
  12. G. Carpintero, E. Rouvalis, K. Ławniczuk, M. Fice, C. C. Renaud, X. J. Leijtens, E. A. Bente, M. Chitoui, F. Van Dijk, and A. J. Seeds, “95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser,” Opt. Lett. 37, 3657–3659 (2012).
    [Crossref] [PubMed]
  13. E. J. Stanton, M. J. R. Heck, J. Bovington, A. Spott, and J. E. Bowers, “Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform,” Opt. Express 23, 11272–11283 (2015).
    [Crossref] [PubMed]
  14. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
    [Crossref]
  15. M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  16. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
    [Crossref]
  17. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
    [Crossref]
  18. K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser Photon. Rev. 6, 14–23 (2012).
    [Crossref]
  19. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
    [Crossref]
  20. J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
    [Crossref]
  21. E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760 nm,” Opt. Lett. 41, 1785–1788 (2016).
    [Crossref] [PubMed]
  22. M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
    [Crossref]
  23. B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20, 18313–18318 (2012).
    [Crossref] [PubMed]
  24. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Topics Quantum Electron. 11, 567–577 (2005).
    [Crossref]
  25. G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
    [Crossref]
  26. P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
    [Crossref]
  27. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  28. P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
    [Crossref]
  29. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref] [PubMed]
  30. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511–517 (2010).
    [Crossref]
  31. G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).
  32. T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
    [Crossref]
  33. P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
    [Crossref]
  34. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
    [Crossref]
  35. J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
    [Crossref]
  36. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
    [Crossref]
  37. S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
    [Crossref]
  38. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
    [Crossref]
  39. P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 μm,” Opt. Express 23, 26168–26181 (2015).
    [Crossref] [PubMed]
  40. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  41. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
    [Crossref] [PubMed]
  42. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
    [Crossref] [PubMed]
  43. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
    [Crossref]
  44. R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
    [Crossref]
  45. D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
    [Crossref]
  46. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  47. Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express 21, 7793–7798 (2013).
    [Crossref] [PubMed]
  48. M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
    [Crossref]
  49. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
    [Crossref]
  50. W. Hürlimann, Encyclopedia of Statistical Sciences (Vol. 2) (John Wiley & Sons, Inc., 2006), pp. 1031–1035, 2nd ed.
  51. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
    [Crossref] [PubMed]
  52. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [Crossref] [PubMed]

2017 (1)

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

2016 (2)

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760 nm,” Opt. Lett. 41, 1785–1788 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (5)

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
[Crossref]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (6)

2011 (2)

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
[Crossref]

2010 (3)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511–517 (2010).
[Crossref]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (1)

2005 (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Topics Quantum Electron. 11, 567–577 (2005).
[Crossref]

2003 (1)

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

2002 (1)

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

2001 (1)

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

2000 (2)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

1999 (1)

S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
[Crossref]

1997 (2)

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

1996 (1)

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

1995 (1)

K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
[Crossref]

1994 (1)

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
[Crossref]

1993 (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

1991 (2)

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

C. Dragone, “An N × N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[Crossref]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Abassi, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Adar, R.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Adleman, J. R.

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

Akca, B. I.

Alex, A.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Baets, R.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Baribeau, J.-M.

S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
[Crossref]

Barritault, P.

Bauters, J. F.

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Bauwelinck, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Belkin, M. A.

Bente, E. A.

Bienstman, P.

Blonder, G. E.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Bogaerts, W.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

Boulila, F.

Bovington, J.

Bowers, J. E.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760 nm,” Opt. Lett. 41, 1785–1788 (2016).
[Crossref] [PubMed]

E. J. Stanton, M. J. R. Heck, J. Bovington, A. Spott, and J. E. Bowers, “Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform,” Opt. Express 23, 11272–11283 (2015).
[Crossref] [PubMed]

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511–517 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

Boyd, R. W.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

Brun, M.

Bulthuis, H. F.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Capasso, F. A.

Cardile, P.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Carpintero, G.

Carras, M.

Cheben, P.

Chen, X.

Chen, Y.-K.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Chitoui, M.

Cohen, O.

Cooper, J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Coppinger, F.

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

Cunningham, J. E.

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Dave, U.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Dave, U. D.

Davenport, M. L.

E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760 nm,” Opt. Lett. 41, 1785–1788 (2016).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

De Groote, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

De Koninck, Y.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

de Ridder, R. M.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

Delage, A.

S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
[Crossref]

Delâge, A.

den Besten, J. H.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Densmore, A.

Dessens, M. P.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Dhakal, A.

Dhoore, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Diehl, L.

Docter, B.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Doerr, C. R.

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20, 18313–18318 (2012).
[Crossref] [PubMed]

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
[Crossref]

Dong, P.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Dragone, C.

C. Dragone, “An N × N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

Drexler, W.

Driessen, A.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Duan, G.-H.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Dumon, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Topics Quantum Electron. 11, 567–577 (2005).
[Crossref]

Fang, A. W.

Fice, M.

Fu, X.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Gan, F.

Garcia, J. M.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Gassenq, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Glidle, A.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Goyal, A. K.

Groen, F. H.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Guo-Qiang, P. L.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Hartmann, J.-M.

Hattasan, N.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Haynes, R.

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

Heck, M. J.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Heck, M. J. R.

E. J. Stanton, M. J. R. Heck, J. Bovington, A. Spott, and J. E. Bowers, “Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform,” Opt. Express 23, 11272–11283 (2015).
[Crossref] [PubMed]

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Henry, C. H.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Hens, Z.

Herben, C. G. P.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Himeno, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Hochberg, M.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Hoekstra, H. J. W. M.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Hu, Z.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Huang, Q.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Hulme, J. C.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

Hunter, D. K.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

Hürlimann, W.

W. Hürlimann, Encyclopedia of Statistical Sciences (Vol. 2) (John Wiley & Sons, Inc., 2006), pp. 1031–1035, 2nd ed.

Ironside, C. N.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Itoh, M.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Jalali, B.

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

Janz, S.

Jones, R.

Kadota, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Kansky, J.

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Keyvaninia, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Kistler, R. C.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Klunder, D. J. W.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Kohtoku, M.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Komljenovic, T.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

Krishnamoorthy, A. V.

Kumari, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Kuyken, B.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Labeye, P.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lawniczuk, K.

Le Thomas, N.

Lee, B. G.

Lee, J.-H.

Leijtens, X. J.

Leijtens, X. J. M.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Leo, F.

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

Leys, M. R.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Li, G.

Li, L.

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
[Crossref] [PubMed]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Li, W.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511–517 (2010).
[Crossref]

Loo, R.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Luo, Y.

Malik, A.

Martens, D.

Mashanovich, G. Z.

Mechet, P.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Mekis, A.

Morthier, G.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Muneeb, M.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Nedeljkovic, M.

Neilson, D. T.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Nicoletti, S.

Nishi, I.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
[Crossref]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

O’Mahony, M. J.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
[Crossref]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Okamoto, K.

K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser Photon. Rev. 6, 14–23 (2012).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
[Crossref]

Oku, S.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Olsson, N. A.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Packirisamy, M.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
[Crossref]

Pang, A.

Paniccia, M. J.

Park, H.

Pathak, S.

Peters, J. D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Peyskens, F.

Pflügl, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Pollnau, M.

Post, E.

Pottier, P.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
[Crossref]

Považay, B.

Prather, D.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Qi, M.

Raj, K.

Renaud, C. C.

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Roelkens, G.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Roth, M.

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

Rouvalis, E.

Ruocco, A.

Ryckeboer, E.

Sanchez, A.

Sanchez, D.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Sanjoh, H.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Schmid, J.

Seeds, A. J.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

Sengo, G.

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20, 18313–18318 (2012).
[Crossref] [PubMed]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Shani, Y.

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

Shao, H.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Sheng, Z.

Shi, Z.

Shibata, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Shimura, Y.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Shubin, I.

Simeonidou, D.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

Smit, M. K.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[Crossref]

Sorel, M.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Spencer, D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Spott, A.

Spuesens, T.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Stanton, E. J.

Stoll, A.

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

Strain, M. J.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
[Crossref]

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Subramanian, A. Z.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Suzuki, S.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
[Crossref]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Takahashi, H.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
[Crossref]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Takiguchi, K.

K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
[Crossref]

Tan, F. S.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

Tassaert, M.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Thacker, H.

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Tran, M. A.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

Trinh, P.

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

Trotter, D. C.

Tzanakaki, A.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Uvin, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Van Campenhout, J.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

van Dam, C.

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

van der Veen, T.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Van Dijk, F.

Van Dorpe, P.

van Gasse, K.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Van Thourhout, D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Verbist, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

Volet, N.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

Waldron, P.

Wang, J.

Wang, R.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Wang, X.

Wang, Z.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Watts, M. R.

Williams, R. L.

S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
[Crossref]

Winzer, P. J.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
[Crossref]

Wörhoff, K.

Wu, A.

Wuytens, P.

Xie, W.

Xu, D.-X.

Yao, J.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

Yegnanarayanan, S.

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

Yin, H.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Yin, X.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Yoshikuni, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

Zhang, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Zhang, L.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
[Crossref]

Zhang, Z.

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

Zhao, H.

Zheng, X.

Zortman, W. A.

Zou, S.

ACS Photonics (1)

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator,” ACS Photonics 1, 430–436 (2014).
[Crossref]

Appl. Phys. A (1)

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116, 427–432 (2014).
[Crossref]

Appl. Phys. Lett. (2)

R. Adar, Y. Shani, C. H. Henry, R. C. Kistler, G. E. Blonder, and N. A. Olsson, “Measurement of very low-loss silica on silicon waveguides with a ring resonator,” Appl. Phys. Lett. 58, 444–445 (1991).
[Crossref]

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Electron. Lett. (6)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997).
[Crossref]

K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995).
[Crossref]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[Crossref]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

IEEE Commun. Mag. (1)

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39, 128–135 (2001).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (5)

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Topics Quantum Electron. 11, 567–577 (2005).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Topics Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Sel. Topics Quantum Electron. 19, 6100117 (2013).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Topics Quantum Electron. 16, 33–44 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (7)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A Robust Method for Characterization of Optical Waveguides and Couplers,” IEEE Photon. Technol. Lett. 28, 1517–1520 (2016).
[Crossref]

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

P. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

C. Dragone, “An N × N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

J. Lightw. Technol. (3)

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightw. Technol. 12, 989–995 (1994).
[Crossref]

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29, 536–541 (2011).
[Crossref]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightw. Technol. 21, 1099–1110 (2003).
[Crossref]

Lab Chip (1)

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip 12, 2850–2857 (2012).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser Photon. Rev. 6, 14–23 (2012).
[Crossref]

Nanophotonics (1)

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Nat. Photon. (3)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511–517 (2010).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photon. 9, 374–377 (2015).
[Crossref]

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[Crossref]

Opt. Express (12)

Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express 21, 7793–7798 (2013).
[Crossref] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref] [PubMed]

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref] [PubMed]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20, 18313–18318 (2012).
[Crossref] [PubMed]

E. J. Stanton, M. J. R. Heck, J. Bovington, A. Spott, and J. E. Bowers, “Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform,” Opt. Express 23, 11272–11283 (2015).
[Crossref] [PubMed]

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21, 16648–16656 (2013).
[Crossref] [PubMed]

P. Cheben, J. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref] [PubMed]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17, 16216–16224 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Photon. Res. (1)

Photonics (1)

A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges,” Photonics 4, 30 (2017).
[Crossref]

Proc. SPIE (1)

S. Janz, D.-X. Xu, J.-M. Baribeau, A. Delage, and R. L. Williams, “Si/Si1−xGex waveguide components for WDM demultiplexing,” Proc. SPIE 3630, 106–114 (1999).
[Crossref]

Pure Appl. Opt. (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Other (2)

W. Hürlimann, Encyclopedia of Statistical Sciences (Vol. 2) (John Wiley & Sons, Inc., 2006), pp. 1031–1035, 2nd ed.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. De Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Z. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III–V-on-Silicon Photonic Devices for Optical Communication and Sensing,” 2, 969–1004 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Diagram of the AWG-ring with complex amplitudes i and t of the input and output guided electric fields. Coupling between the bus and ring waveguides is characterized by τ̃ and κ̃. (b) Schematic of the AWG design parameters.
Fig. 2
Fig. 2 On-chip transmission spectra calculated (left axis) for each channel of an AWG and (right axis) for an AWG-ring. Colored dots show examples of the three parameters defined in (5), for the ideal case where η = 1.
Fig. 3
Fig. 3 (a) Cross-section SEM of the bus waveguide. Micrographs (b) of an AWG and (c) of an AWG-ring. (d) Top-view schematic of the facet design.
Fig. 4
Fig. 4 Schematic of the experimental setup to measure transmission spectra. The optical beam drawn in blue is in a PM fiber, the red one in free-space, and the green one in a single-mode fiber. Yellow boxes represent 3-axis flexure stages.
Fig. 5
Fig. 5 (a, left axis) One off-chip transmission spectrum Tw measured for a straight waveguide and (a, right axis) transmission spectrum w averaged over all straight waveguide measurements. (b) Spectrum of the coefficient of variation Vw.
Fig. 6
Fig. 6 OFDR signal (in blue) of a spiral waveguide with a dual fit (in red).
Fig. 7
Fig. 7 On-chip transmission spectra ta extracted for each channel of a single AWG. Normalization is performed (a) with the waveguide method and (b) with the AWG-ring method. Disks indicate the 3-dB CXT for each channel with their respective uncertainty.
Fig. 8
Fig. 8 Coupling parameter τ2 (left axis) extracted from the UMZI transmission spectra. The uncertainty Δτ2 is plotted on the left axis in dotted black lines and on the right axis in blue.
Fig. 9
Fig. 9 Calculated AWG-ring on-chip transmission spectrum (left axis) and (right axis) extracted AWG on-chip transmittance. The grey and the light-green areas respectively delimit the uncertainties from the conventional and the present methods.
Fig. 10
Fig. 10 (Left axis) Measured AWG-ring off-chip transmission spectrum Tr and (right axis) AWG on-chip transmission spectrum ta extracted using the 3 expressions introduced in Eq. (5).
Fig. 11
Fig. 11 (Left axis) Measured AWG-ring off-chip transmission spectrum Tr and (right axis) on-chip transmission spectra ta extracted for each AWG channel using (7).

Tables (2)

Tables Icon

Table 1 Design parameters for each AWG.

Tables Icon

Table 2 Summary of on-chip AWG transmission ta.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

𝒜 = t g exp ( i k 0 n io L io ) j = 1 N AW E j ( 1 + δ j ) exp ( i θ j ) ,
θ j k 0 [ n AW L AW , j + n FPR ( r + L FPR , j ) ] + ϕ j ,
t r = | τ ˜ 𝒜 2 1 τ ˜ * 𝒜 2 | 2 = τ 2 + t a 2 2 τ t a cos ( Φ ) 1 + ( τ t a ) 2 2 τ t a cos ( Φ ) ,
η T r / t r = T a / t a .
T r = { η τ 2 T r , 0 as t a / τ 0 η ( τ + t a 1 + τ t a ) 2 T r , max for Φ = π ( 1 + 2 m ) η ( τ t a 1 τ t a ) 2 T r , min for Φ = 2 π m ,
T r , max T r , 0 = τ + t a τ ( 1 + τ t a ) R a t a = τ ( R a 1 ) 1 τ 2 R a ,
± T r , min T r , 0 = τ t a τ ( 1 τ t a ) R b t a = τ ( 1 R b ) 1 τ 2 R b ,
± T r , max T r , min = τ + t a τ t a 1 τ t a 1 + τ t a R c τ ( R c 1 ) t a 2 + [ ( 1 + R c ) ( 1 τ 2 ) ] t a + τ ( 1 R c ) = 0 .
CXT x 3 dB , x t a , x d λ 3 dB , x ( y = 1 N ch t a , y t a , x ) d λ ,
XT ¯ 1 N ch 1 x = 1 N ch CXT x .
t a = T a / T w ,
V w = 1 λ f λ 0 λ 0 λ f V w d λ ,
Δ T r = 1 N w N s l = 1 N w m = 1 N s V w , l ( λ m 1 ; λ m ) ,

Metrics