Abstract

We implement a miniaturized calcium beam optical frequency standard using specially-designed fully-sealed vacuum tube, and realize the comparison with another calcium beam optical clock whose vacuum tube is sealed by flanges. The electron shelving detection method is adopted to improve the signal-to-noise ratio of the clock transition spectroscopy, and the readout laser is locked by modulation-free frequency locking technology based on Doppler effect. Injection locking is carried out to boost the power of the 657 nm master clock transition laser, thus ensuring the comparison. The fractional instability of the miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube is 1.8×10−15 after 1600 s of averaging. Total volume of the system except for electronics is about 0.3 m3. To our knowledge, it’s the first time to realize the optical frequency standard using fully-sealed vacuum tube. This work will promote the miniaturization and transportability of the optical clock based on atomic beam.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference

John J. McFerran and Andre N. Luiten
J. Opt. Soc. Am. B 27(2) 277-285 (2010)

Direct comparison of two cold-atom-based optical frequency standards by using a femtosecond-laser comb

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg
Opt. Lett. 26(2) 102-104 (2001)

Vapor-cell frequency reference for short-wavelength transitions in neutral calcium

Jennifer Taylor, Bryan Hemingway, James Hanssen, Thomas B. Swanson, and Steven Peil
J. Opt. Soc. Am. B 35(7) 1557-1562 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
    [Crossref]
  2. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
    [Crossref]
  3. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
    [Crossref]
  4. S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
    [Crossref]
  5. F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
    [Crossref]
  6. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
    [Crossref] [PubMed]
  7. P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
    [Crossref]
  8. K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
    [Crossref]
  9. J. J. Mcferran and A. N. Luiten, “Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference,” J. Opt. Soc. Am. B 27, (2)277–285 (2010).
    [Crossref]
  10. R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.
  11. N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
    [Crossref]
  12. K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
    [Crossref]
  13. X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.
  14. S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
    [Crossref] [PubMed]
  15. J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
    [Crossref]
  16. J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.
  17. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  18. W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
    [Crossref] [PubMed]
  19. P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
    [Crossref] [PubMed]
  20. R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
    [Crossref] [PubMed]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  22. K. Nakagawa, M. Teshima, and M. Ohtsu, “Injection locking of a highly coherent and high-power diode laser at 1.5 μm,” Opt. Lett. 16(20), 1590–1592 (1991).
    [Crossref] [PubMed]
  23. Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
    [Crossref] [PubMed]
  24. F. Riehle, Frequency standards basics and applications (WILEY-VCH Verlab GmbH& Co. KGaA, 2004), Chap. 2.
  25. S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.
  26. P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
    [Crossref]
  27. X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).
  28. S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
    [Crossref]
  29. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
    [Crossref]
  30. G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
    [Crossref]
  31. N. Beverini and F. Strumia, “High precision measurements of the Zeeman effect in the Calcium metastable states,” in: Interaction of Radiation with Matter, A Volume in Honour of A. Gozzini, Quaderni della Scuola Normale Superiore de Pisa, Pisa, 1987, pp. 361–373.
  32. U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
    [Crossref]
  33. J. Li and W. A. Van Wijngaarden, “Stark shift measurement of the (4s)2 1S0 → (4s 4p)3P1 calcium transition,” Phys. Rev. A 53(1), 604–606 (1996).
    [Crossref] [PubMed]

2017 (3)

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

2016 (4)

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

2015 (4)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

2014 (1)

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

2013 (2)

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

2012 (1)

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

2010 (1)

2006 (1)

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

2004 (1)

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

2000 (1)

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

1999 (2)

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

1996 (1)

J. Li and W. A. Van Wijngaarden, “Stark shift measurement of the (4s)2 1S0 → (4s 4p)3P1 calcium transition,” Phys. Rev. A 53(1), 604–606 (1996).
[Crossref] [PubMed]

1991 (2)

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

K. Nakagawa, M. Teshima, and M. Ohtsu, “Injection locking of a highly coherent and high-power diode laser at 1.5 μm,” Opt. Lett. 16(20), 1590–1592 (1991).
[Crossref] [PubMed]

1986 (1)

W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1946 (1)

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref] [PubMed]

Akatsuka, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Alighanbari, S.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Aoki, T.

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Barwood, G. P.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Beloy, K.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Beverini, N.

N. Beverini and F. Strumia, “High precision measurements of the Zeeman effect in the Calcium metastable states,” in: Interaction of Radiation with Matter, A Volume in Honour of A. Gozzini, Quaderni della Scuola Normale Superiore de Pisa, Pisa, 1987, pp. 361–373.

Bishof, M.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Bize, S.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Bongs, K.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Brown, R.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Brown, R. C.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Cao, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Casias, A.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Cerez, P.

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

Chang, S.

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Chao, S.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Chen, H.

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

Chen, J.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Chen, P.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

Chen, Z.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

Chida, Y.

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Clairon, A.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Cui, K.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Degenhardt, C.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Dehmelt, H.

W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
[Crossref] [PubMed]

Dimarcq, N.

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

Dorscher, S.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

Douglas, W.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Falke, S.

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

Fasano, R. J.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Fortier, T.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Fox, R.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Fox, R. W.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Gill, P.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Giordano, V.

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

Grotti, J.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

Hafner, S.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Helmcke, J.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Hill, I. R.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Hinkley, N.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Hollberg, L.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Holleville, D.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huang, K.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

Huang, X.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Hughes, J.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Jau, Y. Y.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Jiang, Z.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Kaenders, W.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Katori, H.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Kellogg, J. R.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Kersten, P.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

Kock, O.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Kolkowitz, S.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Koller, S. B.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kuroishi, Y.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Labachelerie, M.

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

Langellier, N.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Laurent, P.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Lemke, N. D.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Lemonde, P.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Li, J.

J. Li and W. A. Van Wijngaarden, “Stark shift measurement of the (4s)2 1S0 → (4s 4p)3P1 calcium transition,” Phys. Rev. A 53(1), 604–606 (1996).
[Crossref] [PubMed]

Li, M.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Lisdat, C.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Lodewyck, J.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Ludlow, A. D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Luiten, A. N.

J. J. Mcferran and A. N. Luiten, “Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference,” J. Opt. Soc. Am. B 27, (2)277–285 (2010).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Lukin, M. D.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Manginell, R. P.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Mann, A. G.

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Martin, M. J.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Masoudi, A. A.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

Mcferran, J. J.

McGrew, W. F.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Meng, F.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Mensing, F.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

Milani, G.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

Miyahara, B.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Moorman, M.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Munekane, H.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nagourney, W.

W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
[Crossref] [PubMed]

Nakagawa, K.

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Nicolodi, D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

Oates, C.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Oates, C. W.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Ohmae, N.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Ohtsu, M.

Ohtsubo, N.

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Olson, J.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Olson, J. B.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Origlia, S.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Ovchinnikov, Y. B.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Pan, D.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

Partner, H.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Phillips, N. B.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Pikovski, I.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Pizzocaro, M.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Poli, N.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

Pound, R. V.

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref] [PubMed]

Prestage, J. D.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Riehle, F.

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

F. Riehle, Frequency standards basics and applications (WILEY-VCH Verlab GmbH& Co. KGaA, 2004), Chap. 2.

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Salomon, C.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Sandberg, J.

W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
[Crossref] [PubMed]

Santarelli, G.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Schiller, S.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Schioppo, M.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Schnatz, H.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Schwindt, P. D. D.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Shang, H.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

Shang, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Sheerin, T.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Sherman, J. A.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Shimada, Y.

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Shu, H.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Singh, Y.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Smith, L.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Sortais, Y.

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

Sterr, U.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

Stoehr, H.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Stoner, R.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Strumia, F.

N. Beverini and F. Strumia, “High precision measurements of the Zeeman effect in the Calcium metastable states,” in: Interaction of Radiation with Matter, A Volume in Honour of A. Gozzini, Quaderni della Scuola Normale Superiore de Pisa, Pisa, 1987, pp. 361–373.

Stuhler, J.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Swallows, M. D.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Swierad, D.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Takamoto, M.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Takano, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Targat, R. L.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Teshima, M.

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Theobald, G.

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

Tino, G. M.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

Torii, Y.

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Ushijima, I.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Van Wijngaarden, W. A.

J. Li and W. A. Van Wijngaarden, “Stark shift measurement of the (4s)2 1S0 → (4s 4p)3P1 calcium transition,” Phys. Rev. A 53(1), 604–606 (1996).
[Crossref] [PubMed]

Venon, B.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Vogt, S.

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

Wagner, A. R.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

Walsworth, R. L.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Wang, A.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Wang, S.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Wei, H.

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Williams, J. R.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Wilpers, G.

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

Xue, X.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

Yamaguchi, A.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Ye, J.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

Yoon, T. H.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

Yu, D.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

Yuan, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Zhang, J.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

Zhang, P.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Zhang, S.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Zhang, X.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Zhuang, W.

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

Appl. Phys. B (4)

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68(1), 27–38 (1999).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117(4), 1107–1116 (2014).
[Crossref]

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

C. R. Physique (1)

U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, “The optical calcium frequency standards of PTB and NIST,” C. R. Physique 5(8), 845–855 (2004).
[Crossref]

C.R. Physique (1)

K. Bongs, Y. Singh, L. Smith, H. Wei, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C.R. Physique 16(5), 553–564 (2015).
[Crossref]

Chinese Phys. Lett. (1)

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chinese Phys. Lett. 23(12), 3198–3201 (2006).
[Crossref]

IEEE T. Instrum. Meas. (1)

P. Cerez, G. Theobald, V. Giordano, N. Dimarcq, and M. Labachelerie, “Laser diode optically pumped Cesium beam frequency standard investigations at LHA,” IEEE T. Instrum. Meas. 40(2), 137–141 (1991).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. Bize, Y. Sortais, P. Lemonde, S. Zhang, P. Laurent, G. Santarelli, C. Salomon, and A. Clairon, “Interrogation oscillator noise rejection in the comparison of atomic fountains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 1253–1255 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2×10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Nat. Photonics (3)

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2016).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Li and W. A. Van Wijngaarden, “Stark shift measurement of the (4s)2 1S0 → (4s 4p)3P1 calcium transition,” Phys. Rev. A 53(1), 604–606 (1996).
[Crossref] [PubMed]

Phys. Rev. D (1)

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Phys. Rev. Lett. (4)

S. B. Koller, J. Grotti, S. Vogt, A. A. Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref] [PubMed]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref]

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56(26), 2797–2799 (1986).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Rev. Sci. Instrum. (3)

P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, “A highly miniaturized vacuum package for a trapped ion atomic clock,” Rev. Sci. Instrum. 87(5), 053112 (2016).
[Crossref] [PubMed]

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref] [PubMed]

Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, and Y. Torii, “A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr,” Rev. Sci. Instrum. 84(6), 063101 (2013).
[Crossref] [PubMed]

Science (1)

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341(6151), 1215–1218 (2013).
[Crossref] [PubMed]

The Scientific World Journal (1)

X. Zhang, S. Zhang, D. Pan, P. Chen, X. Xue, W. Zhuang, and J. Chen, “Hanle detection for optical clocks,” The Scientific World Journal 2015, 614737 (2015).

Other (6)

F. Riehle, Frequency standards basics and applications (WILEY-VCH Verlab GmbH& Co. KGaA, 2004), Chap. 2.

S. Zhang, X. Zhang, H. Shang, H. Chen, and J. Chen, “Frequency stabilization of 423 nm laser for calcium beam optical frequency standard,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 765–767.

N. Beverini and F. Strumia, “High precision measurements of the Zeeman effect in the Calcium metastable states,” in: Interaction of Radiation with Matter, A Volume in Honour of A. Gozzini, Quaderni della Scuola Normale Superiore de Pisa, Pisa, 1987, pp. 361–373.

X. Zhang, S. Zhang, Z. Jiang, M. Li, H. Shang, F. Meng, W. Zhuang, A. Wang, and J. Chen, “A transportable calcium atomic beam optical clock,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2016), pp. 1–4.

J. Olson, R. Fox, R. Brown, T. Fortier, T. Sheerin, R. Stoner, C. W. Oates, and A. D. Ludlow, “High-stability laser using Ramsey-Borde interferometry,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2017), pp. 32–33.

R. W. Fox, J. A. Sherman, W. Douglas, J. B. Olson, A. D. Ludlow, and C. W. Oates, “A high stability optical frequency reference based on thermal calcium atoms,” in Proceedings of IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Overall configuration of both small calcium optical frequency standards. The cornsilk dashed box is the PDH construction, the azure dashed box is the injection locking construction, and the chartreuse dashed boxes are the atomic interaction constructions. Polarization maintaining fiber (PMF, Thorlabs P3-630PM-FC). 657 nm ML, 657 nm maser laser. 657 nm SL, 657 nm slave laser. Isolator, optical isolator. Rotator, Faraday rotator. AOM, acousto-optic modulator. EOM, electro-optic modulator. PD, photodetector. PMT, photomultiplier tube. DDS, direct digital synthesizer. AOM3 and AOM4 are double-passed. The system I uses the vacuum tube sealed by flanges and the system II uses the fully-sealed vacuum tube. The directions of the atomic beam flow of the two vacuum tubes are all from right to the left.
Fig. 2
Fig. 2 Photograph and computer drawing of the fully-sealed vacuum tube. There are three pairs of windows in the direction of beam flow, the first pair near to the calcium granules is 423 nm readout laser locking window, the second pair is 657 nm clock transition window surrounded by solenoid, and the third pair is the 423 nm readout transition window.
Fig. 3
Fig. 3 Spectrometer of the clock transition. Inset figure is the relevant energy level of the calcium atom. The natural linewidth of the 3P1 state is ~400 Hz.
Fig. 4
Fig. 4 Instability at 1 s at each measured atomic flux and clock transition laser power. The colorbar on the right indicates the Allan deviation at 1 s. In the upper subfigure, blue dash-dot line is the theoretical instability at 4.7 mW clock transition laser power, red circle points are the experimental data.
Fig. 5
Fig. 5 Frequency difference of the two systems recorded more than three hours. Absolute mean frequency difference | < ν3ν4 > | is 126 Hz.
Fig. 6
Fig. 6 Total Allan deviation of the miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube. Green-solid line represents white-frequency-noise asymptote of 5.5 × 10 14 / τ . Error bars indicate 1σ confidence intervals.

Tables (1)

Tables Icon

Table 1 Corrections (corr., Hz) and uncertainties (unc., Hz) of the two systems.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ ( τ ) = σ ( ν 3 ν 4 ) 2 ν 0 ,
σ a t o m ( τ ) 1 Q τ 1 N + 1 η n N + σ B   2 ( η n N ) 2 + N d e t N 2 ,
σ ( τ ) 1 Q K N d e t τ ,

Metrics