Abstract

Phased arrays are expected to play a critical role in visible and infrared wireless systems. Their improved performance compared to single element antennas finds uses in communications, imaging, and sensing. However, fabrication of photonic antennas and their feeding network require long element separation, leading to the appearance of secondary radiation lobes and, consequently, crosstalk and interference. In this work, we experimentally show that by arranging the elements according to the Fermat’s spiral, the side lobe level (SLL) can be reduced. This reduction is proved in a CMOS-compatible 8-element array, revealing a SLL decrement of 0.9 dB. Arrays with larger numbers of elements and inter-element spacing are demonstrated through an spatial light modulator (SLM) and an SLL drop of 6.9 dB is measured for a 64-element array. The reduced SLL, consequently, makes the proposed approach a promising candidate for applications in which antenna gain, power loss, or information security are key requirements.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear imaging through a Fermat’s golden spiral multicore fiber

Siddharth Sivankutty, Viktor Tsvirkun, Olivier Vanvincq, Géraud Bouwmans, Esben Ravn Andresen, and Hervé Rigneault
Opt. Lett. 43(15) 3638-3641 (2018)

Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers

Keyvan Sayyah, Oleg Efimov, Pamela Patterson, James Schaffner, Carson White, Jean-Francois Seurin, Guoyang Xu, and Alexander Miglo
Opt. Express 23(15) 19405-19416 (2015)

Omnidirectional beam steering using aperiodic optical phased array with high error margin

Dongwei Zhuang, Lanxuan Zhagn, Xiaochuan Han, Yuxuan Li, Yingzhi Li, Xiaobin Liu, Fengli Gao, and Junfeng Song
Opt. Express 26(15) 19154-19170 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
    [Crossref]
  2. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
    [Crossref]
  3. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [Crossref] [PubMed]
  4. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  5. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
    [Crossref] [PubMed]
  6. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
    [Crossref] [PubMed]
  7. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and lidar,” Opt. Express 25, 2511–2528 (2017).
    [Crossref]
  8. M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
  9. K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
    [Crossref] [PubMed]
  10. J. K. Doylend, M. J. R. Heck, J. I. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
    [Crossref] [PubMed]
  11. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref] [PubMed]
  12. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
    [Crossref] [PubMed]
  13. K. V. Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18, 13655–13660 (2010).
    [Crossref] [PubMed]
  14. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  15. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23, 6509–6519 (2015).
    [Crossref] [PubMed]
  16. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  17. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Express 23, 21012–21022 (2015).
    [Crossref] [PubMed]
  18. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
    [Crossref]
  19. A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. STu4G–2.
  20. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).
  21. R. J. Mailloux, Phased Array Antenna Handbook, vol. 2 (Artech HouseBoston, 2005).
  22. J. Sun, E. S. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39, 367–370 (2014).
    [Crossref] [PubMed]
  23. M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
    [Crossref]
  24. J. S. Petko and D. H. Werner, “The evolution of optimal linear polyfractal arrays using genetic algorithms,” IEEE T. Antenn. Propag. 53, 3604–3615 (2005).
    [Crossref]
  25. M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
    [Crossref]
  26. M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE T. Antenn. Propag. 53, 2674–2679 (2005).
    [Crossref]
  27. S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
    [Crossref]
  28. T. G. Spence and D. H. Werner, “Design of broadband planar arrays based on the optimization of aperiodic tilings,” IEEE T. Antenn. Propag. 56, 76–86 (2008).
    [Crossref]
  29. M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
    [Crossref]
  30. D. W. Boeringer, “Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements,” (2002). US Patent6,433,754.
  31. M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
    [Crossref]
  32. L. H. Gabrielli and H. E. Hernandez-Figueroa, “Aperiodic antenna array for secondary lobe suppression,” IEEE Photonic Tech. L. 28, 209–212 (2016).
    [Crossref]
  33. J. N. Ridley, “Packing efficiency in sunflower heads,” Math. Biosci. 58, 129–139 (1982).
    [Crossref]
  34. R. V. Jean, Phyllotaxis: a Systemic Study in Plant Morphogenesis (Cambridge University Press, 2009).
  35. M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
    [Crossref]
  36. L. Dal Negro and S. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser & Photonics Reviews 6, 178–218 (2012).
    [Crossref]
  37. J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.
  38. J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” J. Opt. Soc. Am. A 32, 2082–2092 (2015).
    [Crossref]

2017 (3)

2016 (2)

M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
[Crossref]

L. H. Gabrielli and H. E. Hernandez-Figueroa, “Aperiodic antenna array for secondary lobe suppression,” IEEE Photonic Tech. L. 28, 209–212 (2016).
[Crossref]

2015 (4)

2014 (3)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

2012 (2)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

L. Dal Negro and S. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser & Photonics Reviews 6, 178–218 (2012).
[Crossref]

2011 (3)

J. K. Doylend, M. J. R. Heck, J. I. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

2010 (4)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

K. V. Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18, 13655–13660 (2010).
[Crossref] [PubMed]

2009 (3)

K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
[Crossref] [PubMed]

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

2008 (2)

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[Crossref]

T. G. Spence and D. H. Werner, “Design of broadband planar arrays based on the optimization of aperiodic tilings,” IEEE T. Antenn. Propag. 56, 76–86 (2008).
[Crossref]

2006 (1)

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

2005 (2)

M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE T. Antenn. Propag. 53, 2674–2679 (2005).
[Crossref]

J. S. Petko and D. H. Werner, “The evolution of optimal linear polyfractal arrays using genetic algorithms,” IEEE T. Antenn. Propag. 53, 3604–3615 (2005).
[Crossref]

2002 (1)

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

1982 (1)

J. N. Ridley, “Packing efficiency in sunflower heads,” Math. Biosci. 58, 129–139 (1982).
[Crossref]

Abediasl, H.

Abiri, B.

Acoleyen, K. V.

Aflatouni, F.

Ahmed, Z.

M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Baets, R.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

Belov, P. A.

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Boeringer, D. W.

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

D. W. Boeringer, “Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements,” (2002). US Patent6,433,754.

Bogaerts, W.

Boriskina, S.

L. Dal Negro and S. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser & Photonics Reviews 6, 178–218 (2012).
[Crossref]

Bovington, J. I.

Bowers, J. E.

Bray, M. G.

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

Byrd, M. J.

Caille, G.

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

Chen, R. T.

Christodoulou, C. G.

M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE T. Antenn. Propag. 53, 2674–2679 (2005).
[Crossref]

Coldren, L.

Coldren, L. A.

Cole, D. B.

Coolbaugh, D.

Covey, J.

Dainese, P. C.

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.

Dal Negro, L.

L. Dal Negro and S. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser & Photonics Reviews 6, 178–218 (2012).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Dominguez, R.

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Doylend, J. K.

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli and H. E. Hernandez-Figueroa, “Aperiodic antenna array for secondary lobe suppression,” IEEE Photonic Tech. L. 28, 209–212 (2016).
[Crossref]

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[Crossref]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Goudos, S. K.

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

Gregory, M. D.

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

Hajimiri, A.

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Hashemi, H.

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).

J. K. Doylend, M. J. R. Heck, J. I. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
[Crossref] [PubMed]

Helkey, R.

Hernandez-Figueroa, H. E.

L. H. Gabrielli and H. E. Hernandez-Figueroa, “Aperiodic antenna array for secondary lobe suppression,” IEEE Photonic Tech. L. 28, 209–212 (2016).
[Crossref]

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.

Hosseini, A.

Hosseini, E. S.

Houdré, R.

Ihsan, M. B.

M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
[Crossref]

Jágerská, J.

Jean, R. V.

R. V. Jean, Phyllotaxis: a Systemic Study in Plant Morphogenesis (Cambridge University Press, 2009).

Jiang, M.

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Khodier, M. M.

M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE T. Antenn. Propag. 53, 2674–2679 (2005).
[Crossref]

Kivshar, Y. S.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Komljenovic, T.

Krasnok, A. E.

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kurvits, J. A.

Kwong, D.

Lager, I. E.

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

Leake, G.

Li, N.

Machuga, D. W.

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

Mailloux, R. J.

R. J. Mailloux, Phased Array Antenna Handbook, vol. 2 (Artech HouseBoston, 2005).

Mangenot, C.

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

Mendez, A. L.

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

Michaels, A.

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. STu4G–2.

Miroshnichenko, A. E.

Moresco, M.

Moysiadou, V.

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

Niaz, M. W.

M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Panduro, M. A.

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

Peters, J. D.

Petko, J. S.

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

J. S. Petko and D. H. Werner, “The evolution of optimal linear polyfractal arrays using genetic algorithms,” IEEE T. Antenn. Propag. 53, 3604–3615 (2005).
[Crossref]

Pita, J. L.

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.

Poulton, C. V.

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Raval, M.

Rekhi, A.

Ridley, J. N.

J. N. Ridley, “Packing efficiency in sunflower heads,” Math. Biosci. 58, 129–139 (1982).
[Crossref]

Rogier, H.

Romero, G.

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

Sahalos, J. N.

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

Samaras, T.

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

Siakavara, K.

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Spence, T. G.

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

T. G. Spence and D. H. Werner, “Design of broadband planar arrays based on the optimization of aperiodic tilings,” IEEE T. Antenn. Propag. 56, 76–86 (2008).
[Crossref]

Su, Z.

Subbaraman, H.

Sun, J.

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Thomas, N. L.

Timurdogan, E.

Toso, G.

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

Vermeulen, D.

Viganó, M. C.

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Watts, M. R.

Werner, D. H.

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

T. G. Spence and D. H. Werner, “Design of broadband planar arrays based on the optimization of aperiodic tilings,” IEEE T. Antenn. Propag. 56, 76–86 (2008).
[Crossref]

J. S. Petko and D. H. Werner, “The evolution of optimal linear polyfractal arrays using genetic algorithms,” IEEE T. Antenn. Propag. 53, 3604–3615 (2005).
[Crossref]

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

Xu, X.

Yaacobi, A.

Yablonovitch, E.

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. STu4G–2.

Zhang, Y.

Zia, R.

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

AEU-INT J. Electron. C. (1)

M. A. Panduro, A. L. Mendez, R. Dominguez, and G. Romero, “Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms,” AEU-INT J. Electron. C. 60, 713–717 (2006).
[Crossref]

AEU-Int. J. Electron.F C (1)

M. W. Niaz, Z. Ahmed, and M. B. Ihsan, “Reflectarray with logarithmic spiral lattice of elementary antennas on its aperture,” AEU-Int. J. Electron.F C 70, 1050–1054 (2016).
[Crossref]

IEEE Antenn. Propag. M. (1)

M. D. Gregory, J. S. Petko, T. G. Spence, and D. H. Werner, “Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays,” IEEE Antenn. Propag. M. 52, 28–45 (2010).
[Crossref]

IEEE Antenn. Wirel. Pr. (1)

S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antenn. Wirel. Pr. 9, 125–129 (2010).
[Crossref]

IEEE Photonic Tech. L. (1)

L. H. Gabrielli and H. E. Hernandez-Figueroa, “Aperiodic antenna array for secondary lobe suppression,” IEEE Photonic Tech. L. 28, 209–212 (2016).
[Crossref]

IEEE T. Antenn. Propag. (4)

T. G. Spence and D. H. Werner, “Design of broadband planar arrays based on the optimization of aperiodic tilings,” IEEE T. Antenn. Propag. 56, 76–86 (2008).
[Crossref]

M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE T. Antenn. Propag. 53, 2674–2679 (2005).
[Crossref]

M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning,” IEEE T. Antenn. Propag. 50, 1732–1742 (2002).
[Crossref]

J. S. Petko and D. H. Werner, “The evolution of optimal linear polyfractal arrays using genetic algorithms,” IEEE T. Antenn. Propag. 53, 3604–3615 (2005).
[Crossref]

Int. J. Antenn. Propag. (1)

M. C. Viganó, G. Toso, G. Caille, C. Mangenot, and I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antenn. Propag. 2009, 1–10 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser & Photonics Reviews (1)

L. Dal Negro and S. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser & Photonics Reviews 6, 178–218 (2012).
[Crossref]

Math. Biosci. (1)

J. N. Ridley, “Packing efficiency in sunflower heads,” Math. Biosci. 58, 129–139 (1982).
[Crossref]

Nanophotonics (1)

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).

Nat. Commun. (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Other (6)

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. STu4G–2.

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

R. J. Mailloux, Phased Array Antenna Handbook, vol. 2 (Artech HouseBoston, 2005).

D. W. Boeringer, “Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements,” (2002). US Patent6,433,754.

R. V. Jean, Phyllotaxis: a Systemic Study in Plant Morphogenesis (Cambridge University Press, 2009).

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “CLEO: Science and Innovations,” (Optical Society of America, 2016), pp. SM3G–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of the fabricated SOI-based arrays and their feeding network. (a) uniformly distributed array antenna; (b) non-uniformly distributed array antenna; and (c) distribution network. The inset in (b) shows a zoom of the antenna element.
Fig. 2
Fig. 2 Setup for near-field and far-field measurement of fabricated SOI-based array antennas at 1550 nm. (a) Photograph of the setup; (b) block diagram for near-field measurement; (c) block diagram for far-field measurement. PC: polarization controller, LF: lensed fiber, PS: piezo-electric stage, L1: objective lens, and L2: infra-red lens, and CCD: InGaAs camera.
Fig. 3
Fig. 3 Characterization of the fabricated photonic antennas: (i) uniformly distributed array and (ii) Fermat’s spiral array. (a) near-field measurement, (b) simulated far-field radiation pattern, (c) measured far-field radiation pattern (the green circumference represents the numerical aperture of the objective, around 24°), (d) far-field radiation intensity for a single element and the uniformly distributed array in the azimuthal angle where the secondary lobe is more intense, and (f) same as (e) but for the spiral array.
Fig. 4
Fig. 4 Sparse array evaluation setup for flexible configurations. (a) Setup for far-field emulation of photonic antennas at 633 nm. SMF: single mode fiber; CO: collimator; LP: linear polarizer; L3, L4, and L5: lenses; SLM: spatial light modulator; M: mirror. 0 and 1+ indicate the two main diffraction orders. (b) Blazed grating on the SLM. The detailed view shows the phase profile for 2 grating periods, Λ. (c) Element matrices (example with 64-elements) for (i) periodic and (ii) spiral arrangements. (d) Resulting phase masks for the same arrangements.
Fig. 5
Fig. 5 Far-field radiation patterns for different phased-array configurations. (a) Phase masks and (b) captured far-field radiation patterns for uniform arrays with (i) 25 and (ii) 64 elements. The lines in (b) represent the directions where the secondary lobe is maximum. (c) Normalized far-field intensity along the lines of maximal SLL, represented by the straight lines in (b). For reference, the radiation intensity for a single element is represented in the dashed line. (d–f) Phase-masks, captured far-fields, and normalized far-field intensities in the maximal SLL directions for Fermat’s spiral with 25 and 64 elements.
Fig. 6
Fig. 6 SLL of both periodic square arrays and Fermat’s spiral with different numbers of antennas. As predicted by theory, the SLL remains around 0 dB for the uniform arrays, being independent of the number of elements. In contrast, for the Fermat’s spiral array, as the number of antennas increases, the SLL decreases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ n = d K n
ϕ n = n π ( 3 5 )

Metrics