Abstract

A mobile phone camera with an innovative electrically tunable liquid crystal lens (TLCL) concept is demonstrated. We first report the comparative theoretical and experimental analyses of the performance of a traditional “modal control” TLCL versus a TLCL using a floating (unpowered) transparent electrode (FTE). It is shown that the appropriate choice of voltage and frequency values of the driving electric signal may improve significantly (almost twice) the optical quality of the lens using the FTE. Exceptionally low spherical aberrations of the lens (< λ/10 for up to 10 diopters of optical power) and high modulation transfer functions of a mobile phone camera (using those lenses for autofocus function) are demonstrated in a very simple operation mode (frequency tuning of the lens’ optical power at a fixed driving voltage). The capacity of the camera to perform high quality long distance photography and near distance bar code recognition within a short autofocus convergence time are demonstrated.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically variable liquid crystal lenses for ophthalmic distance accommodation

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan
Opt. Express 27(13) 18803-18817 (2019)

Liquid crystal lens with corrected wavefront asymmetry

Louis Begel and Tigran Galstian
Appl. Opt. 57(18) 5072-5078 (2018)

Dynamic compensation of gradient index rod lens aberrations by using liquid crystals

Louis Begel and Tigran Galstian
Appl. Opt. 57(26) 7618-7621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. V. Galstian, Smart Mini-Cameras (CRC, Taylor & Francis Group, 2013).
  2. C. B. S. Interviews Graham Townsend, Head of Apple Camera Team, Image Sensors World, Monday, December 21, 2015. http://image-sensors-world.blogspot.ca/2015/12/cbs-interviews-graham-townsend-apple.html ; consulted 08 June 2016.
  3. Titanium S35 model, consulted 08 June 2016, http://www.karbonnmobiles.com/ .
  4. S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6, 471 (1999).
  5. G. Li, Progress in Optics Volume 55 (Elsevier B.V., 2010), Chap.4.
  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1995).
  7. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1996).
  8. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010).
  9. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [PubMed]
  10. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
    [PubMed]
  11. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [PubMed]
  12. J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.
  13. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [PubMed]
  14. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [PubMed]
  15. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [PubMed]
  16. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).
  17. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).
  18. V. V. Presnyakov, K. E. Asatryan, T. Galstian, and A. Tork, “Tunable polymer-stabilized liquid crystal microlens,” Opt. Express 10(17), 865–870 (2002).
    [PubMed]
  19. H. W. Ren and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys. Lett. 82, 22–24 (2003).
  20. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [PubMed]
  21. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
  22. A. Naumov, G. Love, M. Yu. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
  23. F. Kahn, Electronically variable iris or stop mechanisms, US Patent 3,741,629, Jun 26, 1973.
  24. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).
  25. www.lensvector.com ; consulted 08 June 2016.
  26. M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433, 229–236 (2005).
  27. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [PubMed]
  28. T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
    [PubMed]
  29. A. Zohrabyan, K. Asatryan, T. Galstian, V. Presniakov, A. Tork, and A. Bagramyan, Multiple cell liquid crystal optical device with coupled electric field control, United States Patent 8,994,915, March 31, 2015.
  30. T. Galstian, P. Clark, P. T. C. Antognini, J. Parker, D. A. Proudian, T. E. Killick, and A. Zohrabyan, Autofocus system and method, United States Patent 8,629,932, January 14, 2014.
  31. T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single nematic liquid crystal layer,” Opt. Eng. 54(2), 025104 (2015).
  32. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [PubMed]
  33. N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).
  34. P. Clark, “Modeling and Measuring Liquid Crystal Tunable Lenses,” Proc. SPIE 9293, 929301 (2014).
  35. ISO 12233 (1998), “Photography – Electronic still picture cameras – Resolution measurements,” ISO.
  36. T. Galstian and P. Clark, Variable focus camera lens, International Patent Application No. PCT/CA2016/050690 (WO/2016/201565), Filing 15.06.2016/Publishing: 22.12.2016.

2016 (1)

2015 (2)

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single nematic liquid crystal layer,” Opt. Eng. 54(2), 025104 (2015).

O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
[PubMed]

2014 (2)

2013 (1)

2010 (1)

2006 (1)

2005 (1)

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433, 229–236 (2005).

2004 (3)

2003 (1)

H. W. Ren and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys. Lett. 82, 22–24 (2003).

2002 (2)

V. V. Presnyakov, K. E. Asatryan, T. Galstian, and A. Tork, “Tunable polymer-stabilized liquid crystal microlens,” Opt. Express 10(17), 865–870 (2002).
[PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

2000 (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

1999 (3)

A. Naumov, G. Love, M. Yu. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6, 471 (1999).

1998 (1)

1994 (1)

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).

Allahverdyan, K.

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single nematic liquid crystal layer,” Opt. Eng. 54(2), 025104 (2015).

Asatryan, K.

Asatryan, K. E.

Bagramyan, A.

Belopukhov, V. N.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

Bos, P. J.

Bryant, D.

Careau, S.

Clamp, J. H.

Clark, P.

P. Clark, “Modeling and Measuring Liquid Crystal Tunable Lenses,” Proc. SPIE 9293, 929301 (2014).

Cotovanu, M.

Dejule, M. C.

Fan, Y. H.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).

Galstian, T.

Gauza, S.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).

Gleeson, H. F.

Guralnik, I. R.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
[PubMed]

Hain, M.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

Knittel, J.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

Kotova, S. P.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

Lavrentovich, O. D.

Li, L.

Loktev, M. Y.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

Loktev, M. Yu.

Love, G.

Love, G. D.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

Milton, H. E.

Morgan, P. B.

Naumov, A.

Naumov, A. F.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
[PubMed]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

Pishnyak, O.

Presniakov, V.

Presnyakov, V.

Presnyakov, V. V.

Ren, H. W.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).

H. W. Ren and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys. Lett. 82, 22–24 (2003).

Reshetnyak, V.

Richter, H.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

Riza, N. A.

Sato, S.

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[PubMed]

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433, 229–236 (2005).

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[PubMed]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6, 471 (1999).

Somalingam, S.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

Sova, O.

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).

Thiboutot, M.

Tork, A.

Tschudi, T.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

Van Heugten, T.

Vdovin, G.

Vdovin, G. V.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

Vladimirov, F.

Vladimirov, F. L.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

Wang, B.

Wu, S. T.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).

H. W. Ren and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys. Lett. 82, 22–24 (2003).

Ye, M.

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433, 229–236 (2005).

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[PubMed]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

Zel’dovich, B. Y. A.

N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).

Zohrabyan, A.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789 (2004).

H. W. Ren and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys. Lett. 82, 22–24 (2003).

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(11A), L1232– L1233 (2002).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

N. V. Tabiryan, A. V. Sukhov, and B. Y. A. Zel’dovich, “Orientational Optical Nonlinearity of Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 136(1), 1–139 (1986).

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433, 229–236 (2005).

Opt. Eng. (1)

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single nematic liquid crystal layer,” Opt. Eng. 54(2), 025104 (2015).

Opt. Express (5)

Opt. Lett. (3)

Opt. Rev. (1)

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6, 471 (1999).

Proc. SPIE (1)

P. Clark, “Modeling and Measuring Liquid Crystal Tunable Lenses,” Proc. SPIE 9293, 929301 (2014).

Quantum Electron. (1)

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid crystal lenses with a controlled focal length. I:Theory,” Quantum Electron. 29, 256–260 (1999).

Rev. Sci. Instrum. (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).

Other (14)

G. Li, Progress in Optics Volume 55 (Elsevier B.V., 2010), Chap.4.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1995).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1996).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010).

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in a blu-ray disc system,” in Proceedings of IEEE.-Science, Measurement and Technology152(1), (IEEE, 2005), pp.15–18.

T. V. Galstian, Smart Mini-Cameras (CRC, Taylor & Francis Group, 2013).

C. B. S. Interviews Graham Townsend, Head of Apple Camera Team, Image Sensors World, Monday, December 21, 2015. http://image-sensors-world.blogspot.ca/2015/12/cbs-interviews-graham-townsend-apple.html ; consulted 08 June 2016.

Titanium S35 model, consulted 08 June 2016, http://www.karbonnmobiles.com/ .

www.lensvector.com ; consulted 08 June 2016.

F. Kahn, Electronically variable iris or stop mechanisms, US Patent 3,741,629, Jun 26, 1973.

A. Zohrabyan, K. Asatryan, T. Galstian, V. Presniakov, A. Tork, and A. Bagramyan, Multiple cell liquid crystal optical device with coupled electric field control, United States Patent 8,994,915, March 31, 2015.

T. Galstian, P. Clark, P. T. C. Antognini, J. Parker, D. A. Proudian, T. E. Killick, and A. Zohrabyan, Autofocus system and method, United States Patent 8,629,932, January 14, 2014.

ISO 12233 (1998), “Photography – Electronic still picture cameras – Resolution measurements,” ISO.

T. Galstian and P. Clark, Variable focus camera lens, International Patent Application No. PCT/CA2016/050690 (WO/2016/201565), Filing 15.06.2016/Publishing: 22.12.2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic presentation of the structure of the proposed TLCL. Dc – diameter of the controlling hole patterned electrode (HPE), Df – diameter of the additional floating (non-connected) transparent electrode (FTE), WCL – weakly conductive layer, d – thickness of the top substrate, PI – polyimide alignment layer, L – thickness of the LC layer, UTE – uniform transparent electrode.
Fig. 2
Fig. 2 Theoretical simulation results for (a) the driving frequency dependence of the optical power (in Diopters) and (b) the influence of the distance of the FTE on the wavefront of output light for the TLCL with floating electrode. The black curve with squares corresponds to the modal control lens (no FTE); all the remaining curves correspond to the TLCL with FTE for d = 500 µm (blue circles), d = 100 µm (green diamonds), and d = 5 µm (red triangles).
Fig. 3
Fig. 3 Theoretical simulation results for optimized RMS spherical aberrations at 10 Diopters of optical power with the TLCL using the floating electrode (orange squares, referred as “Floating”) and the traditional modal control TLCL (blue diamonds, referred as “Reference”).
Fig. 4
Fig. 4 Characterization of the traditional modal control TLCL (a) The clear optical power (COP) versus the frequency of the driving electric signal for various voltage values; (b) RMS spherical aberrations versus the COP.
Fig. 5
Fig. 5 Characterization of the proposed TLCL using the floating electrode (a) The OP versus the frequency of the driving electric signal for various voltage values; (b) RMS spherical aberrations versus the COP.
Fig. 6
Fig. 6 Comparative experimental results for optimized spherical aberrations at 10 Diopters of OP with the TLCL using the floating electrode (green circles, referred as “Floating”) and the traditional TLCL without the floating electrode (orange squares, referred as “Reference”).
Fig. 7
Fig. 7 Photography of the ASIC driver (left), the TLCL (center) and of a camera kit (right) with the TLCL incorporated on the top.
Fig. 8
Fig. 8 Schematics of the experimental set-up used for the characterization of the camera performance using different types of TLCLs
Fig. 9
Fig. 9 Single spatial frequency plaid test target (a) used to study the MTF “map”; the typical experimental results (b) for the MTF “map” and the spatially averaged MTF (c) for both types of LC lenses (red squares: the lens with FTE; blue diamonds: the modal control lens) incorporated in a 5MP, 1/4 inch (1.4 um pixel). Ny/4 was used for measurements.
Fig. 10
Fig. 10 Resolution chart ISO12233 (a) and the intensity profile (b) along the vertical line (a) when using a traditional modal control lens (bottom b) and the developed lens with floating conductive layer (top b).
Fig. 11
Fig. 11 Long distance image quality obtained with the mobile camera including the TLCL with FTE.
Fig. 12
Fig. 12 Study of the scanned image quality by using the image of a book’s bar code at 10 cm distance; left: the original image; right: the extracted bar code and the line of intensity profile analysis.
Fig. 13
Fig. 13 Comparative demonstration of the near field image quality (contrast) obtained with various mobile cameras, including the TLCL, an iPhone 6 and a fix-focus camera (without AF). Top: contrast of the bar code at 5 cm; bottom: contrast of the bar code at 10 cm.
Fig. 14
Fig. 14 Schematic presentation of the focus search algorithms for the case of (a) VCM and (b) TLCL.
Fig. 15
Fig. 15 Summary of AFCT measurements for 4 camera systems (in ms). Standard deviations are different for various lighting conditions and distances, but their approximate (for all distances) values are 48 ms, 65 ms, 78 ms and 228 ms (at 10 Lux) and 11 ms, 33 ms, 46 ms and 24 ms (at 250 Lux) for LVAF Aptina, Samsung SIII, Iphone 5 and Lumia 920, respectively.
Fig. 16
Fig. 16 TLCLs manufactured on a generation 2 LCD panel.

Tables (1)

Tables Icon

Table 1 Parameters used for theoretical simulations of the TLCL’s performance.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n GRIN (x)= n c x 2 2fL ,
P TLCL F C tot V 2 ,
V th =π K ε 0 | Δ ε LC | ,
OPD= 2π λ 0 0 L ( n ext (z) n )dz ,
F= F elastic + F electric = K 11 2 (divn) 2 dV+ K 22 2 (ncurln) 2 dV + K 33 2 [ n×curln ] 2 dV 1 2 (ED)dV ,
θ zz + ε 0 ε a 2K sin(2θ) E z 2 =0,
θ(x,z=0)= θ pretilt θ(x,z=L)= θ pretilt ,
( ( ε 0 ε+i σ ω )V )=0,
{ θ zz + ε 0 ε a 2K sin(2θ) E z 2 =0 ( ( ε 0 ε+i σ ω )V )=0.
OP=2δn L r 2 ,

Metrics