Abstract

We report a cost-effective and high-throughput method, featuring a double-transfer process and through-fiber curing, to pattern metallic nanostructures on optical fiber facet as portable plasmonic probes for refractive index (RI) sensing. A thin layer of ultraviolet-curable adhesive is coated onto fiber facet to imprint-transfer pre-fabricated metallic nanostructures from a polymeric template to the fiber facet. The reflection spectra of the plasmonic fiber probe in liquid solution samples with various RI are experimentally investigated to demonstrate its capability for real-time and in situ RI sensing. The optical reflection and local electric field distribution of the plasmonic sensing structures are also investigated through numerical modeling. The fiber-facet plasmonic sensor exhibits robust and flexible potential for RI-based sensing applications, and the reported fabrication method is applicable for the production of other functional nanodevices on fiber facets.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing

Zhitao Cao, Lan Jiang, Sumei Wang, Peng Wang, Fei Zhang, and Yongfeng Lu
Appl. Opt. 53(6) 1028-1032 (2014)

A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing

Yongbin Lin, Yang Zou, and Robert G. Lindquist
Biomed. Opt. Express 2(3) 478-484 (2011)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
    [PubMed]
  2. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
  3. F. Geiss, S. Fossati, I. Khan, N. G. Quilis, W. Knoll, and J. Dostálek, “UV-SPR biosensor for biomolecular interaction studies,” in SPIE Optics + Optoelectronics, (International Society for Optics and Photonics, 2017), 1023107–1023108.
  4. P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
    [PubMed]
  5. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).
  7. A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).
  8. R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
    [PubMed]
  9. J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
    [PubMed]
  10. Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
    [PubMed]
  11. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
  12. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [PubMed]
  13. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).
  14. A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
    [PubMed]
  15. H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).
  16. M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).
  17. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
    [PubMed]
  18. M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
    [PubMed]
  19. Z. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, “On-fiber plasmonic interferometer for multi-parameter sensing,” Opt. Express 23(8), 10732–10740 (2015).
    [PubMed]
  20. X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).
  21. H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).
  22. A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
    [PubMed]
  23. P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).
  24. P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
    [PubMed]
  25. X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).
  26. Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).
  27. A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).
  28. X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
    [PubMed]
  29. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

2017 (3)

J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
[PubMed]

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

2016 (4)

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

2015 (5)

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

Z. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, “On-fiber plasmonic interferometer for multi-parameter sensing,” Opt. Express 23(8), 10732–10740 (2015).
[PubMed]

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
[PubMed]

2014 (6)

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[PubMed]

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).

2013 (3)

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

2012 (2)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).

2011 (2)

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
[PubMed]

2009 (1)

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).

2006 (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Altug, H.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Bae, H.

Bai, S.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Ballard, Z. S.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Baxter, G.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Bazargan, S.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Bhardwaj, A.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Bono, T.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).

Chen, Y.

Cheng, B.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Collins, S.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Consales, M.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Crescitelli, A.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Cusano, A.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Davis, T.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Du, K.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Ebendorff-Heidepriem, H.

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

Erdene, N.

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Esposito, E.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Etezadi, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Galeotti, F.

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Giessen, H.

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).

Giordano, M.

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

Gong, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Gupta, A. K.

Gupta, B. D.

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

He, X.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Huang, J.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Iadicicco, A.

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

Jeong, D.-H.

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Jeong, H.-H.

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Jia, P.

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[PubMed]

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

Jiang, H.

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

Khan, A.

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

La Ferrara, V.

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

Lan, X.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).

Lee, S.-K.

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Lee, T.-W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Lei, Z.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

Li, Q.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Li, S.

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

Li, W.-D.

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

Limaj, O.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Lin, Y.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
[PubMed]

Lindquist, R. G.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
[PubMed]

Liu, H.

Liu, N.

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).

Long, J.

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Lu, X.

Ma, Y.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Masson, J.-F.

J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
[PubMed]

Micco, A.

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

Nguyen, H.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Oh, S.-H.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Olson, D. A.

Ozcan, A.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).

Park, J.-H.

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Pisco, M.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

Qiu, M.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Qu, Y.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Quero, G.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

Ricciardi, A.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Roberts, A.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Rodrigo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).

Sabarinathan, J.

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

Sanders, M.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Sathianathan, S.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Shi, H.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Shir, D.

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

Sidiroglou, F.

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

Soares, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Tang, X.

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

Tittl, A.

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).

Vaiano, P.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

Verma, R.

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

Wan, R.

Wang, H.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Wang, Y.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

Wei, J.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Wittenberg, N. J.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Xiao, H.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Yang, J.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[PubMed]

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

Yang, Q.

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Yang, T.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Yang, Z.

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

Ye, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Yi, H.

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Yoo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Yu, M.

Zhang, T.

Zhang, Z.

Zhao, D.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Zhou, X.

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Zou, Y.

ACS Nano (2)

Z. S. Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS Nano 11(2), 2266–2274 (2017).
[PubMed]

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

ACS Photonics (1)

M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano, and A. Cusano, “Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips,” ACS Photonics 1, 917–927 (2014).

ACS Sens (1)

J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
[PubMed]

ACS Sensors (1)

P. Jia, Z. Yang, J. Yang, and H. Ebendorff-Heidepriem, “Quasiperiodic Nanohole Arrays on Optical Fibers as Plasmonic Sensors: Fabrication and Sensitivity Determination,” ACS Sensors 1, 1078–1083 (2016).

Adv. Opt. Mater. (1)

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4, 480–486 (2016).

Analyst (Lond.) (1)

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[PubMed]

Appl. Phys. Lett. (3)

H. Nguyen, F. Sidiroglou, S. Collins, T. Davis, A. Roberts, and G. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Appl. Phys. Lett. 103, 193116 (2013).

X. He, H. Yi, J. Long, X. Zhou, J. Yang, and T. Yang, “Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing,” Appl. Phys. Lett. 108, 231105 (2016).

Z. Lei, X. Zhou, J. Yang, X. He, Y. Wang, and T. Yang, “Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing,” Appl. Phys. Lett. 110, 171107 (2017).

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
[PubMed]

Food Chem. (1)

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

J. Vac. Sci. Technol. B (1)

A. Khan, S. Li, X. Tang, and W.-D. Li, “Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 32, 06FI02 (2014).

Nano Lett. (1)

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[PubMed]

Nanophotonics (1)

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3, 157–180 (2014).

Nanoscale (1)

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[PubMed]

Nanotechnology (1)

P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).

Opt. Eng. (1)

H.-H. Jeong, N. Erdene, S.-K. Lee, D.-H. Jeong, and J.-H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Opt. Eng. 50, 124405 (2011).

Opt. Express (2)

Opt. Fiber Technol. (2)

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Lab-on-fiber devices as an all around platform for sensing,” Opt. Fiber Technol. 19, 772–784 (2013).

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[PubMed]

Sci. Rep. (1)

A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, and A. Cusano, “Optical fiber tip templating using direct focused ion beam milling,” Sci. Rep. 5, 15935 (2015).
[PubMed]

Sensor Actuat. Biol. Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

X. Lan, B. Cheng, Q. Yang, J. Huang, H. Wang, Y. Ma, H. Shi, and H. Xiao, “Reflection based extraordinary optical transmission fiber optic probe for refractive index sensing,” Sensor Actuat. Biol. Chem. 193, 95–99 (2014).

Other (1)

F. Geiss, S. Fossati, I. Khan, N. G. Quilis, W. Knoll, and J. Dostálek, “UV-SPR biosensor for biomolecular interaction studies,” in SPIE Optics + Optoelectronics, (International Society for Optics and Photonics, 2017), 1023107–1023108.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of UV-cured imprint transfer process to fabricate nanostructures on optical fiber facet. (a) Final plasmonic fiber probe with coupling disk-hole bilayer gold structure patterned on top of fiber facet. (b) A thin layer of UV-curable adhesive spin-coated on a silicon wafer for adhesive transfer process. (c) Optical fiber with a thin layer of UV-curable adhesive transferred on the fiber facet. (d) Nanostructured COC template imprinted with nanopillar array on the surface through a thermal-NIL process. (e) COC template with evaporated gold layer. (f) UV-cured imprint-transfer process using exposing UV light delivered through the fiber. (g) Final fiber-facet plasmonic sensor with bilayer coupling plasmonic disk-hole array transferred on the surface.
Fig. 2
Fig. 2 (a) Side-view microscopy image of the optical fiber tip before (left) and after (right) UV-cured imprint transfer. (b) SEM images of the fiber probe facet covered by a gold hole-array. (c) Magnified detail of the SEM image of zoomed detail shown in (b). (d) SEM image of the fiber probe facet covered by a gold-coated pillar-array. (e) Magnified detail of the SEM image shown in (d). (f) COC template used for patterning the fiber facet shown in (b). The top SEM image shows its pillar-array nanostructure. The measurement of its height, which is 162 nm, is shown in the bottom AFM image.
Fig. 3
Fig. 3 (a) Comparison between the experimental and simulated reflection spectra of the plasmonic fiber probe. (b) Simulated electric field intensity distributions at 920 nm wavelength in the X-Z plane.
Fig. 4
Fig. 4 (a) Optical setup for obtaining reflection spectra on the plasmonic fiber probe. (b) Measured reflection spectra of the fiber sensor in various RI solutions. (c) Relative wavelength shifts of the reflection dips as a function of the refractive index indicated in (b). (d) Simulated wavelength shifts of the reflection dip as a function of refractive index.
Fig. 5
Fig. 5 Simulated local electric-field distribution as a function of (a) gold spacing on the fiber facet nanostructure (with the thickness of gold layer fixed at 40 nm) and (b) gold thickness on the fiber probe facet (with the spacing between the two layers fixed at 160 nm).
Fig. 6
Fig. 6 (a) Extracted reflection spectra with temperature change. (b) Relative wavelength shifts of the reflection dip as a function of water temperature

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= Δλ RIU ,

Metrics