Abstract

In this work, an effective method was presented to obtain a specific micro and nano dual-structures by amplitude modulation in multi-beam laser interference lithography (LIL). Moiré effect was applied to generate the amplitude modulation. The specific intensity modulation patterns can be obtained by the control of the parameter settings of incident laser beams. Both the incident angle and azimuth angle asymmetric configurations can cause the amplitude modulation in the interference optic field and the modulation period is determined by the angle offset. A four-beam LIL system was set up to fabricate patterns on photoresist and verify the method. The experimental results are in good agreement with the theoretical analysis.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of azimuthal angles on laser interference lithography

Jinjin Zhang, Zuobin Wang, Xu Di, Le Zhao, and Dapeng Wang
Appl. Opt. 53(27) 6294-6301 (2014)

Fabrication of hierarchical photonic nanostructures inspired by Morpho butterflies utilizing laser interference lithography

Radwanul Hasan Siddique, Ruben Hünig, Abrar Faisal, Uli Lemmer, and Hendrik Hölscher
Opt. Mater. Express 5(5) 996-1005 (2015)

Fabrication of two-dimensional superposed microstructure by interference lithography

Hao Lü, Qiu-Ling Zhao, Qing-Yue Zhang, Dong-Jie Niu, and Xia Wang
Appl. Opt. 51(3) 302-305 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).
  2. F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
    [PubMed]
  3. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
    [PubMed]
  4. M. Vala and J. Homola, “Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs,” Opt. Express 24(14), 15656–15665 (2016).
    [PubMed]
  5. Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
    [PubMed]
  6. M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).
  7. Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).
  8. S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
    [PubMed]
  9. Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
    [PubMed]
  10. R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
  11. A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M. J. Withford, A. Fuerbach, and S. M. Olaizola, “Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors,” Opt. Mater. Express 2, 1571–1579 (2012).
  12. L. L. Yuan and P. R. Herman, “Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors,” Sci. Rep. 6, 22294 (2016).
    [PubMed]
  13. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).
  14. X. Zhu, Y. Xu, and S. Yang, “Fabrication of 3D high index photonic crystals by holographic lithography and their fidelity,” in Photonic and Phononic Crystal Materials and Devices Ix, A. Adibi, S. Y. Lin, and A. Scherer, eds. (2009).
  15. S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).
  16. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).
  17. M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).
  18. H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
    [PubMed]
  19. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, “Photonic Crystals: Molding the Flow of Light 2nd edn,” Princeton University (2008).

2017 (1)

M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).

2016 (4)

L. L. Yuan and P. R. Herman, “Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors,” Sci. Rep. 6, 22294 (2016).
[PubMed]

M. Vala and J. Homola, “Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs,” Opt. Express 24(14), 15656–15665 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

2014 (1)

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

2013 (2)

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

2012 (1)

2011 (2)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

2010 (2)

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

2006 (1)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

2005 (2)

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

2001 (1)

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Abelmann, L.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

Arriola, A.

Bakowsky, U.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Bernstein, F.

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

Chen, Q.-D.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Chi, L.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Ding, Y.

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

Fang, H.-H.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Fuerbach, A.

Herman, P. R.

L. L. Yuan and P. R. Herman, “Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors,” Sci. Rep. 6, 22294 (2016).
[PubMed]

Homola, J.

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Jang, Y. J.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Jiang, L.

M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).

Ju, B. K.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Ju, B.-K.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kang, B.-H.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kim, D. H.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kim, H.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kim, J.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kim, J. G.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Kratz, C.

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

Kumar, A. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

Lehr, C.-M.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Li, D.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Li, H.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Li, P.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Lim, J. W.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Liou, S. H.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Liu, M.

M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).

Liu, Y.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Lodder, J. C.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Lu, N.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Maple, C.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Mathur, S.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Mücklich, F.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Murillo, R.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

Niu, L.-G.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Oh, Y.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Olaizola, S. M.

Orlic, S.

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

Park, Y. W.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Perez, N.

Petryakov, V. N.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Polushkin, N. I.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Qi, D.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Rodriguez, A.

Salashchenko, N. N.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Schloesser, A.

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

Sellmyer, D. J.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Shen, H.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Shi, G.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Skomski, R.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Sun, H.-B.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Tavera, T.

Vala, M.

van Wolferen, H. A.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

Verevkin, Y. K.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Wang, D.

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Wang, H.

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Wang, J.-N.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Wang, S.

M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).

Wang, Z.

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Withford, M. J.

Wu, D.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Wu, S.-Z.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

Xu, H.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Xu, W.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Yang, B.

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Yao, J.

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

Yu, F.

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

Yu, M.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

Yuan, L. L.

L. L. Yuan and P. R. Herman, “Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors,” Sci. Rep. 6, 22294 (2016).
[PubMed]

Yue, Y.

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Zhang, Z.

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Zheng, M.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

ACS Nano (2)

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Y. Oh, J. W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B. K. Ju, “Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency,” ACS Nano 10(11), 10143–10151 (2016).
[PubMed]

Adv. Mater. (1)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[PubMed]

Appl. Phys. Lett. (4)

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79, 2606–2608 (2001).

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 2374809 (2006).

S. Orlic, F. Bernstein, C. Kratz, and A. Schloesser, “Optical transfer function of three-dimensional photonic crystals by volume holographic recording,” Appl. Phys. Lett. 103, 4816473 (2013).

D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102, 4793752 (2013).

Biomaterials (1)

F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[PubMed]

J. Laser Appl. (1)

Z. Zhang, Z. Wang, D. Wang, and Y. Ding, “Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography,” J. Laser Appl. 26, 4849715 (2014).

Langmuir (2)

S.-Z. Wu, D. Wu, J. Yao, Q.-D. Chen, J.-N. Wang, L.-G. Niu, H.-H. Fang, and H.-B. Sun, “One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting,” Langmuir 26(14), 12012–12016 (2010).
[PubMed]

H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic antireflective hierarchical arrays,” Langmuir 27(8), 4963–4967 (2011).
[PubMed]

Laser Photonics Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Microelectron. Eng. (1)

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).

Nat. Rev. Mater. (1)

M. Liu, S. Wang, and L. Jiang, “Nature-inspired superwettability systems,” Nat. Rev. Mater. 2, 201736 (2017).

Opt. Express (1)

Opt. Mater. Express (1)

Sci. Rep. (1)

L. L. Yuan and P. R. Herman, “Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors,” Sci. Rep. 6, 22294 (2016).
[PubMed]

Other (2)

X. Zhu, Y. Xu, and S. Yang, “Fabrication of 3D high index photonic crystals by holographic lithography and their fidelity,” in Photonic and Phononic Crystal Materials and Devices Ix, A. Adibi, S. Y. Lin, and A. Scherer, eds. (2009).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, “Photonic Crystals: Molding the Flow of Light 2nd edn,” Princeton University (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of four-beam LIL configuration. Beam 1’ is the supposed beam vector with the azimuth angle adjustment. The right is the normal interference pattern in the Z = 0 plane.
Fig. 2
Fig. 2 Simulation result of four-beam LIL in the Z = 0 plane. (a) The incident angle is adjusted to θ' and the lower figures are the intensity profiles in the X-direction. (b) The azimuth angle is adjusted from beam 1 to beam 1’ position, and the beam configuration is shown in Fig. 1. The lower and right figures are the intensity profiles in the X- and Y-directions separately.
Fig. 3
Fig. 3 The effect of incident angle offset on the modulation period. The Z-axis shows the modulation period. The X-axis and Y-axis show the incident angles of the beam pair.
Fig. 4
Fig. 4 The optical setup of the four-beam LIL. (a) Schematic diagram, (b) Photo of the cage system.
Fig. 5
Fig. 5 Three symmetric configurations of four-beam LIL. (a) The LIL result when the four incident angles were 13.5° and the azimuth angles were φ 1 = 0 , φ 2 = 180 , φ 3 = 270 and φ 4 = 90 . (b) The incident angles were θ 1 = θ 2 = 15.5 and θ 3 = θ 4 = 13.5 , and the azimuth angles were the same as those in Fig. 1. (c) All incident angles were 13.5°, and the azimuth angles Δ φ 3 =Δ φ 4 = 20 in the clockwise direction.
Fig. 6
Fig. 6 Amplitude modulations generated by adjusting the incident angles and the azimuth angles separately.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E =Aexp[ i( K r + φ 0 ) ] e
I( r )= j=1 N E 0j 2 +2 i<j E 0i E 0j e ij cos[ ( K i K j ) r + φ 0i φ 0j ]
E ˜ 1 =Aexp(ikxsinθ') E ˜ 2 =Aexp(ikxsinθ) E ˜ 3 =Aexp(ikysinθ) E ˜ 4 =Aexp(ikysinθ)
I= A 2 { 4+2exp[ikx(sinθ+sinθ')]+2exp[ik(xsinθysinθ)] +2exp[ik(xsinθ+ysinθ)]+2exp[ik(xsinθ'+ysinθ)] +2exp[ik(xsinθ'ysinθ)]+2exp(2ikysinθ) }
p x = λ | sinθsinθ' |
E ˜ 1 =Aexp[ik(xsinθcosφysinθsinφ)]
I= A 2 { 4+2exp[ik(xsinθcosφ+ysinθsinφ)]+2exp[ik(xsinθ+ysinθ) +2exp[ik(xsinθcosφ+ysinθ(1+sinφ))]+2exp(2ikysinθ) +2exp[ik(xsinθ+ysinθ(1sinφ))]+2exp[ik(xsinθysinθ)] }
d x = λ sinθ(1+cosφ) d y = λ 2sinθ+sinθsinφ
p x = λ sinθ(1cosφ) p y = λ sinθsinφ
p= p x p y p x 2 + p y 2

Metrics