Abstract

This paper describes how to quantify the scattering that appears in thin films deposited on a flat substrate. The defects appear during the deposition process and are hard to identify from classical optical microscopy pictures due to their small surface and contrast. A new way to probe the microroughness of optical components is described for heterogeneous or large samples (cm2) that requires a statistical analysis of each image over a full mapping of the sample. Due to possible optical misalignment or surface waviness, an automatic adjustment of the optical focus plane was implemented for each image during the surface mapping. In this way, we could measure the scattering using a microscope set-up. The results are linked to diffuse reflection and transmission losses (extinction coefficient k) and several different contributions from the total scattering are identified.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coatings

H. Pin Kao, Nancy Yang, and Joseph S. Schoeniger
J. Opt. Soc. Am. A 15(8) 2163-2171 (1998)

Multi-level diffractive optical elements produced by excimer laser ablation of sol-gel

Estelle Neiss, Manuel Flury, Loïc Mager, Jean-Luc Rehspringer, Alain Fort, Paul Montgomery, Philippe Gérard, Joël Fontaine, and Stéphane Robert
Opt. Express 16(18) 14044-14056 (2008)

Stress measurement of elastic sol-gel layer by photoelasticimetry - comparison with Stoney

Hervé Piombini, François Compoint, Chrystel Ambard, Didier Picart, Philippe Belleville, Gille. Damamme, and Fabrice Brémand
Opt. Mater. Express 6(2) 469-485 (2016)

References

  • View by:
  • |
  • |
  • |

  1. “Methods_and_concepts_in_the_life_sciences/microscopy,” https://en.wikibooks.org/wiki/Methods_and_concepts_in_the_life_sciences/microscopy ( https://en.wikibooks.org/wiki/Methods_and_Concepts_in_the_Life_Sciences/Microscopy )
  2. A. R. Clarke, ‎C. N. Eberhardt, Microscopy techniques for materials science, (Woodhead Publishing, 2002).
  3. G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).
  4. X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
    [PubMed]
  5. J. Avice, F. Compoint, C. Boscher, P. Belleville, C. Sanchez, and H. Piombini, “Indentation hardness and scratch tests for thin layers manufactured by sol-gel process,” in RIAO/Optilas (2016).
  6. M. Dolleiser and S. R. Hashemi-Nezhad, “A fully automated optical microscope for analysis of particle tracks in solids,” Nucl. Instrum. Methods Phys. Res. 198(1–2), 98–107 (2002).
  7. K. H. Guenther, P. G. Wierer, and J. M. Bennett, “Surface roughness measurements of low-scatter mirrors and roughness standards,” Appl. Opt. 23(21), 3820–3836 (1984).
    [PubMed]
  8. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41(1), 154–171 (2002).
    [PubMed]
  9. P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).
  10. P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).
  11. P. Belleville and H. Floch, “Ammonia hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
  12. M. L. André, “The French MegaJoule Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).
  13. J. Puetz and M. A. Aegerter, “Dip coating technique” in Sol-gel Technologies for Glasses Producers and Users (Springer Science and Business Media, 2004).
  14. H. Piombini, F. Sabary, D. Marteau, P. Voarino, G. Chauveau, H. Krol, N. Valette, and C. Grèzes-Besset, “Evaluation of enhanced mirror for LMJ reflector industrial production,” Appl. Opt. 53(4), A305–A313 (2014).
    [PubMed]
  15. F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).
  16. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
  17. L. D. Landau and V. G. Levich, “Dragging of a liquid film by moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).
  18. A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
    [PubMed]
  19. D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
    [PubMed]
  20. “DFW-V500, DFW-VL500 TechManual (V1.0),” http://www.cs.unc.edu/Research/stc/FAQs/Cameras_Lenses/Sony/DFW-V500_TechManual.pdf ( http://www.cs.unc.edu/Research/stc/FAQs/Cameras_Lenses/Sony/DFW-V500_TechManual.pdf ).
  21. “1394-2008- IEEE Standard for a High-Performance Serial Bus,” http://ieeexplore.ieee.org/document/4659233 ( http://ieeexplore.ieee.org/document/4659233 )
  22. “Digital camera module,” https://www.image-sensing-solutions.eu/xcd-v60_tm_acuj100121.pdf ( https://www.image-sensing-solutions.eu/xcd-v60_tm_acuj100121.pdf )
  23. H. Piombini and P. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46(36), 8609–8618 (2007).
    [PubMed]
  24. P. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47(13), C303–C309 (2008).
    [PubMed]
  25. B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).
  26. X. Zhong, T. Wang, J. Yan, and G. Jin, “Aberrations correction of tilted plane-parallel plate in convergent rays,” Appl. Opt. 54(7), 1758–1764 (2015).
  27. Surface roughness https://en.wikipedia.org/wiki/Surface_roughness ( https://en.wikipedia.org/wiki/Surface_roughness )
  28. H. Piombini, X. Dieudonné, C. Boscher, P. Belleville, and O. Gobert, “Residual stresses in multilayer stacks coated by sol-gel process,” in Optifab (2011).
  29. “Depth of field and depth of focus,” https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus ( https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus ).
  30. J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
    [PubMed]
  31. H. Harms and H. M. Aus, “Comparison of digital focus criteria for a TV microscope system,” Cytometry 5(3), 236–243 (1984).
    [PubMed]
  32. L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
    [PubMed]
  33. R. M. Wood, The Power- and Energy-handling Capability of Optical Materials, Components, and Systems (SPIE University, 2003).
  34. J. Mouchart, G. Lagier, and G. Pointu, “Determination des constantes optiques n et k de materiaux faiblement absorbants,” Appl. Opt. 24(12), 1808–1814 (1985).
    [PubMed]
  35. P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” United States patent 8,313,662 B2 (2012).

2016 (3)

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

2015 (1)

2014 (1)

2012 (1)

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

2011 (1)

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[PubMed]

2008 (1)

2007 (2)

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

H. Piombini and P. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46(36), 8609–8618 (2007).
[PubMed]

2004 (1)

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

2002 (2)

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41(1), 154–171 (2002).
[PubMed]

M. Dolleiser and S. R. Hashemi-Nezhad, “A fully automated optical microscope for analysis of particle tracks in solids,” Nucl. Instrum. Methods Phys. Res. 198(1–2), 98–107 (2002).

1999 (1)

M. L. André, “The French MegaJoule Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).

1994 (2)

P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).

P. Belleville and H. Floch, “Ammonia hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).

1991 (1)

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

1985 (1)

1984 (2)

H. Harms and H. M. Aus, “Comparison of digital focus criteria for a TV microscope system,” Cytometry 5(3), 236–243 (1984).
[PubMed]

K. H. Guenther, P. G. Wierer, and J. M. Bennett, “Surface roughness measurements of low-scatter mirrors and roughness standards,” Appl. Opt. 23(21), 3820–3836 (1984).
[PubMed]

1976 (1)

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).

1942 (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid film by moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Ambard, C.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

André, M. L.

M. L. André, “The French MegaJoule Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).

Aus, H. M.

H. Harms and H. M. Aus, “Comparison of digital focus criteria for a TV microscope system,” Cytometry 5(3), 236–243 (1984).
[PubMed]

Ayouch, A.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Beaurain, L.

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

Belleville, P.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).

P. Belleville and H. Floch, “Ammonia hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).

Bennett, J. M.

Bertussi, B.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).

Bonnin, C.

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

Brenner, J. F.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Chauveau, G.

Compoint, F.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Cook, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Culp, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Damiani, D.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Dew, B. S.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Dieudonné, X.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Dolleiser, M.

M. Dolleiser and S. R. Hashemi-Nezhad, “A fully automated optical microscope for analysis of particle tracks in solids,” Nucl. Instrum. Methods Phys. Res. 198(1–2), 98–107 (2002).

Donval, T.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Dubard, J.

Duparré, A.

Duquennoy, M.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

During, A.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Dyan, A.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Fall, D.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Ferre-Borrull, J.

Filtz, J. R.

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).

Firestone, L.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Floch, H.

P. Belleville and H. Floch, “Ammonia hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).

P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).

Furukawa, Y.

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

Gaborit, G.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Gliech, S.

Grèzes-Besset, C.

Guenther, K. H.

Gusev, V.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Hameury, J.

Harms, H.

H. Harms and H. M. Aus, “Comparison of digital focus criteria for a TV microscope system,” Cytometry 5(3), 236–243 (1984).
[PubMed]

Hashemi-Nezhad, S. R.

M. Dolleiser and S. R. Hashemi-Nezhad, “A fully automated optical microscope for analysis of particle tracks in solids,” Nucl. Instrum. Methods Phys. Res. 198(1–2), 98–107 (2002).

Horton, J. B.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Huang, Y.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[PubMed]

Jenot, F.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

Jin, G.

Kang, J. U.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[PubMed]

King, T.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Krol, H.

Lagier, G.

Lamaignère, L.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Landau, L. D.

L. D. Landau and V. G. Levich, “Dragging of a liquid film by moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

LeBorgne, X.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Levich, V. G.

L. D. Landau and V. G. Levich, “Dragging of a liquid film by moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Liu, X.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[PubMed]

Loiseau, M.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Mardelle, S.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Marteau, D.

Montouillou, Y.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Montouillout, Y.

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

Mouchart, J.

Murata, K.

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

Nagashima, K.

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

Neurath, P. W.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Notni, G.

Ouaftouch, M.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Ouaftouh, M.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

Pegon, M.

P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).

Piombini, H.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

H. Piombini, F. Sabary, D. Marteau, P. Voarino, G. Chauveau, H. Krol, N. Valette, and C. Grèzes-Besset, “Evaluation of enhanced mirror for LMJ reflector industrial production,” Appl. Opt. 53(4), A305–A313 (2014).
[PubMed]

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

P. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47(13), C303–C309 (2008).
[PubMed]

H. Piombini and P. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46(36), 8609–8618 (2007).
[PubMed]

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Piwakowski, B.

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Pointu, G.

Pommiers, M.

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Prené, P.

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

Preston, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Ruello, P.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Sabary, F.

Sanchez, C.

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Sazaki, G.

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

Selles, W. D.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

Steinert, J.

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).

Talsania, N.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Valette, N.

Vallé, K.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Vaudel, G.

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Voarino, P.

Wang, T.

Wierer, P. G.

Yan, J.

Zhong, X.

ACS Nano (1)

A. Ayouch, X. Dieudonné, G. Vaudel, H. Piombini, K. Vallé, V. Gusev, P. Belleville, and P. Ruello, “Elasticity of an assembly of disordered nanoparticles interacting via either Van der Waals-bonded or covalent-bonded coating layers,” ACS Nano 6(12), 10614–10621 (2012).
[PubMed]

Acta Physicochim. URSS (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid film by moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Appl. Opt. (7)

Cytometry (2)

H. Harms and H. M. Aus, “Comparison of digital focus criteria for a TV microscope system,” Cytometry 5(3), 236–243 (1984).
[PubMed]

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[PubMed]

Fusion Eng. Des. (1)

M. L. André, “The French MegaJoule Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).

J. Biomed. Opt. (1)

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[PubMed]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).

J. Histochem. Cytochem. (1)

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[PubMed]

J. Mater. Sci. (1)

F. Compoint, D. Fall, H. Piombini, P. Belleville, Y. Montouillou, M. Duquennoy, M. Ouaftouch, F. Jenot, B. Piwakowski, and C. Sanchez, “Sol-gel processed hybrid silica -PDMS layers for the optics of high-power laser flux systems,” J. Mater. Sci. 51(11), 5031–5045 (2016).

Nucl. Instrum. Methods Phys. Res. (1)

M. Dolleiser and S. R. Hashemi-Nezhad, “A fully automated optical microscope for analysis of particle tracks in solids,” Nucl. Instrum. Methods Phys. Res. 198(1–2), 98–107 (2002).

Proc. SPIE (4)

P. Belleville, H. Floch, and M. Pegon, “Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers,” Proc. SPIE 2288, 14–24 (1994).

P. Belleville, P. Prené, C. Bonnin, L. Beaurain, and Y. Montouillout., “How smooth chemistry allows high-power laser optical coating preparation,” Proc. SPIE 5250, 196–202 (2004).

P. Belleville and H. Floch, “Ammonia hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).

B. Bertussi, D. Damiani, M. Pommiers, A. Dyan, H. Piombini, X. LeBorgne, A. During, L. Lamaignère, G. Gaborit, M. Loiseau, S. Mardelle, and T. Donval, “Laser conditioning of KDP crystals using excimer and Nd:YAG lasers,” Proc. SPIE 6403, 64031N (2007).

Prog. Cryst. Growth Charact. Mater. (1)

G. Sazaki, K. Nagashima, K. Murata, and Y. Furukawa, “In-situ observation of crystal surfaces by optical microscopy,” Prog. Cryst. Growth Charact. Mater. 62(2), 408–412 (2016).

Ultrasonics (1)

D. Fall, F. Compoint, M. Duquennoy, H. Piombini, M. Ouaftouh, F. Jenot, B. Piwakowski, P. Belleville, and C. Ambard, “Surface acoustic wave characterization of optical sol-gel thin layers,” Ultrasonics 68, 102–107 (2016).
[PubMed]

Other (12)

“DFW-V500, DFW-VL500 TechManual (V1.0),” http://www.cs.unc.edu/Research/stc/FAQs/Cameras_Lenses/Sony/DFW-V500_TechManual.pdf ( http://www.cs.unc.edu/Research/stc/FAQs/Cameras_Lenses/Sony/DFW-V500_TechManual.pdf ).

“1394-2008- IEEE Standard for a High-Performance Serial Bus,” http://ieeexplore.ieee.org/document/4659233 ( http://ieeexplore.ieee.org/document/4659233 )

“Digital camera module,” https://www.image-sensing-solutions.eu/xcd-v60_tm_acuj100121.pdf ( https://www.image-sensing-solutions.eu/xcd-v60_tm_acuj100121.pdf )

Surface roughness https://en.wikipedia.org/wiki/Surface_roughness ( https://en.wikipedia.org/wiki/Surface_roughness )

H. Piombini, X. Dieudonné, C. Boscher, P. Belleville, and O. Gobert, “Residual stresses in multilayer stacks coated by sol-gel process,” in Optifab (2011).

“Depth of field and depth of focus,” https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus ( https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus ).

J. Avice, F. Compoint, C. Boscher, P. Belleville, C. Sanchez, and H. Piombini, “Indentation hardness and scratch tests for thin layers manufactured by sol-gel process,” in RIAO/Optilas (2016).

“Methods_and_concepts_in_the_life_sciences/microscopy,” https://en.wikibooks.org/wiki/Methods_and_concepts_in_the_life_sciences/microscopy ( https://en.wikibooks.org/wiki/Methods_and_Concepts_in_the_Life_Sciences/Microscopy )

A. R. Clarke, ‎C. N. Eberhardt, Microscopy techniques for materials science, (Woodhead Publishing, 2002).

P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” United States patent 8,313,662 B2 (2012).

J. Puetz and M. A. Aegerter, “Dip coating technique” in Sol-gel Technologies for Glasses Producers and Users (Springer Science and Business Media, 2004).

R. M. Wood, The Power- and Energy-handling Capability of Optical Materials, Components, and Systems (SPIE University, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1 Typical thin sol-gel film crazing observed in interferential contrast microscopy.
Fig. 2
Fig. 2 Synthesis of colloidal silica.
Fig. 3
Fig. 3 Real and expected gain of our camera.
Fig. 4
Fig. 4 Real and expected shutter of our camera.
Fig. 5
Fig. 5 Image without saturation (Lmini = 0, Lmaxi = 168).
Fig. 6
Fig. 6 Saturated image (Lmini = 30.7, Lmaxi = 255).
Fig. 7
Fig. 7 Reconstituted image (Lmini = 30.7, Lmaxi = 6350).
Fig. 8
Fig. 8 Dektak measurements of silicon wafers in two perpendicular directions.
Fig. 9
Fig. 9 Measured and theoretical depth of focus of microscope objectives.
Fig. 10
Fig. 10 Principle of automatic focusing. The image 3 is the sharpest image while the others are blurred. Image 3 corresponds to the searched focusing position.
Fig. 11
Fig. 11 Best image with our method in dark field X50.
Fig. 12
Fig. 12 Best image using Brenner’s gradient in dark field X50.
Fig. 13
Fig. 13 Best image with our method in bright field X20.
Fig. 14
Fig. 14 Best image using Brenner’s gradient in bright field X20
Fig. 15
Fig. 15 The percentage of surface covered by defects for each image (here for a 240 nm film).
Fig. 16
Fig. 16 Average of percentage of surface covered by defects for each image.
Fig. 17
Fig. 17 Scattering volume calculated for each recorded image surface with local images showing the scattering defects.
Fig. 18
Fig. 18 Normalized scattering according to the layer thickness for layer cured or not cured. A fit to the data was added to the figure.
Fig. 19
Fig. 19 Spectral diffuse reflection of the cured layers having different thicknesses (in nm).
Fig. 20
Fig. 20 Spectral transmission for two silica substrates coated with a silica sol-gel layer on both sides: one was not cured and the other was cured during 14 hours. The spectrum of bare silica is also shown.
Fig. 21
Fig. 21 Spectral transmission and corresponding fit for untreated layer (no curing).
Fig. 22
Fig. 22 Spectral transmission and corresponding fit for cured layer (during 14 hours treatment).
Fig. 23
Fig. 23 Extinction coefficient for untreated and cured layers.
Fig. 24
Fig. 24 Image processing to measure the characteristic size and the number of clusters.
Fig. 25
Fig. 25 Number of detected pixels in a cluster according to the cluster number.
Fig. 26
Fig. 26 Histogram of the size distribution of clusters.
Fig. 27
Fig. 27 AFM image to be compared with the microscopy pictures.
Fig. 28
Fig. 28 Distribution in size of treated image using a threshold at the mean value of the distribution [Fig. 26].

Tables (3)

Tables Icon

Table 1 Possible values of settings according to the camera attribute.

Tables Icon

Table 2 Range of displacements according to the microscope magnification.

Tables Icon

Table 3 Thickness t, refractive index n and extinction coefficient k obtained from the two spectral curves in Fig. 21 and Fig. 22.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V = i = 0 N i = 640 j = 0 N j = 480 L i,j
If S > 2048 then τ = 2573 .6-S 15735 .3 else τ = 2048-S 30
{ L i,j =I i,j Sat if I i,j Sat < 250 L i,j = I i,j Sat ( 255-I i,j Sat ) + τ Sat g Sat τ Non Sat g Non Sat I i,j Non Sat ( I i,j Sat -250 ) 5 if 250 < I i,j Sat <255
d Total = λ .n NA 2 + n M .NA .e
{ For local defects, V Local Defects = i = 1 i = N x j = 1 j = N y L i,j with L i,j = L i,j if L i,j > Threshold else L i,j = 0 and For crazing, V Crazing = i = 1 i = N x j = 1 j = N y L i,j with L i,j = L i,j if L i,j < Threshold else L i,j = 0
L Av Crazing = V Crazing N x .N y - S Local Defects

Metrics