Abstract

We propose a retinal-projection-based near-eye display that is able to merge with the vision correction for myopia. Our solution is highlighted by a corrective lens coated with an array of tiled organic light-emitting diodes and a transmissive spatial light modulator. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, modulation transfer function, contrast ratio, distortion, and simulated imaging.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of retinal-projection-based near-eye display with contact lens

Yuhang Wu, Chao Ping Chen, Lantian Mi, Wenbo Zhang, Jingxin Zhao, Yifan Lu, Weiqian Guo, Bing Yu, Yang Li, and Nizamuddin Maitlo
Opt. Express 26(9) 11553-11567 (2018)

Design of see-through near-eye display for presbyopia

Yishi Wu, Chao Ping Chen, Lei Zhou, Yang Li, Bing Yu, and Huayi Jin
Opt. Express 25(8) 8937-8949 (2017)

Design of lensless retinal scanning display with diffractive optical element

Lantian Mi, Chao Ping Chen, Yifan Lu, Wenbo Zhang, Jie Chen, and Nizamuddin Maitlo
Opt. Express 27(15) 20493-20507 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Wikipedia, “Augmented reality,” https://en.wikipedia.org/wiki/augmented_reality .
  2. Wikipedia, “Game of thrones,” https://en.wikipedia.org/wiki/game_of_thrones .
  3. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [PubMed]
  4. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [PubMed]
  5. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [PubMed]
  6. J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
  7. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [PubMed]
  8. R. Zhu, G. Tan, J. Yuan, and S.-T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
  9. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
    [PubMed]
  10. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
  11. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
  12. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [PubMed]
  13. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [PubMed]
  14. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [PubMed]
  15. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
  16. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
  17. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
  18. M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Display Week (2016), pp. 164–167.
  19. C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).
  20. L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” in The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.
  21. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
  22. C. P. Chen, Y. Wu, and L. Zhou, “An optical display device for augmented reality,” CN Patent 201610112824.7 (2016).
  23. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
    [PubMed]
  24. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.
  25. C. Chen, H. Li, Y. Zhang, C. Moon, W. Y. Kim, and C. G. Jhun, “Thin-film encapsulation for top-emitting organic light-emitting diode with inverted structure,” Chin. Opt. Lett. 12(2), 022301 (2014).
  26. Wikipedia, “Human eye,” https://en.wikipedia.org/wiki/human_eye .
  27. Wikipedia, “Cornea,” https://en.wikipedia.org/wiki/cornea .
  28. University of Notre Dame, “Physics of the eye,” https://www3.nd.edu/~nsl/Lectures/mphysics .
  29. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Addison-Wesley, 2006).
  30. Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
    [PubMed]
  31. H. K. Walker, W. D. Hall, and J. W. Hurst, Clinical Methods: The History, Physical and Laboratory Examinations 3rd Edition (Butterworth-Heinemann, 1990), Chap. 58.
  32. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects, 2nd ed. (Wiley, 2010).
  33. X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).
  34. S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs (Springer, 2013).
  35. J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
  36. C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
  37. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. (McGraw-Hill Education, 2008).
  38. B. Brown, The Low Vision Handbook for Eyecare Professionals, 2nd ed. (Slack Inc., 2007).
  39. H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).

2017 (4)

2016 (3)

2015 (2)

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[PubMed]

2014 (4)

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

C. Chen, H. Li, Y. Zhang, C. Moon, W. Y. Kim, and C. G. Jhun, “Thin-film encapsulation for top-emitting organic light-emitting diode with inverted structure,” Chin. Opt. Lett. 12(2), 022301 (2014).

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[PubMed]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

2013 (1)

2010 (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

2009 (2)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[PubMed]

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).

2003 (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

2000 (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).

1995 (1)

1957 (1)

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Amitai, Y.

Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
[PubMed]

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).

Cao, J.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Chen, C.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

C. Chen, H. Li, Y. Zhang, C. Moon, W. Y. Kim, and C. G. Jhun, “Thin-film encapsulation for top-emitting organic light-emitting diode with inverted structure,” Chin. Opt. Lett. 12(2), 022301 (2014).

Chen, C. P.

Chen, C.-P.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Chen, H.-S.

Chen, P.-J.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[PubMed]

Cheng, D.

Duan, X.

Friesem, A. A.

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

Gao, Q.

Han, J.

He, G.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Hopkins, H. H.

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).

Hu, X.

Hua, H.

Huang, S.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Jhun, C.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Jhun, C. G.

Jin, G.

Jin, H.

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

Kim, W. Y.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

C. Chen, H. Li, Y. Zhang, C. Moon, W. Y. Kim, and C. G. Jhun, “Thin-film encapsulation for top-emitting organic light-emitting diode with inverted structure,” Chin. Opt. Lett. 12(2), 022301 (2014).

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Li, H.

Li, X.

Li, Y.

Liang, X.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[PubMed]

Lin, Y.-H.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[PubMed]

Liu, J.

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[PubMed]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[PubMed]

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Liu, P.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

Lu, J.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Maimone, A.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

Moon, C.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Qian, L.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Reinhorn, S.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).

Rolland, J. P.

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

Shi, X.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Su, Y.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Talha, M. M.

Tan, G.

Wang, J.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Wang, K.

Wang, Q.

Wang, Y.

Wang, Y.-J.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[PubMed]

Wang, Z.-X.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Wei, X.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Wu, S.-T.

Wu, X.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Wu, Y.

Xie, J.-W.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Yu, B.

Yuan, J.

Zhang, Y.

Zhang, Z.

Zhao, T.

Zheng, Y.

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Zhou, J.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Zhou, L.

Zhu, R.

ACM Trans. Graph. (1)

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Chin. Phys. B (1)

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

J. Disp. Technol. (2)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).

Opt. Eng. (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).

Opt. Express (7)

Org. Electron. (1)

X. Shi, J. Wang, J. Liu, S. Huang, X. Wu, C. Chen, J. Lu, Y. Su, Y. Zheng, W. Y. Kim, and G. He, “High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation,” Org. Electron. 15(4), 864–870 (2014).

Proc. Phys. Soc. B (1)

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).

Sci. Rep. (1)

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[PubMed]

Other (17)

H. K. Walker, W. D. Hall, and J. W. Hurst, Clinical Methods: The History, Physical and Laboratory Examinations 3rd Edition (Butterworth-Heinemann, 1990), Chap. 58.

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects, 2nd ed. (Wiley, 2010).

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. (McGraw-Hill Education, 2008).

B. Brown, The Low Vision Handbook for Eyecare Professionals, 2nd ed. (Slack Inc., 2007).

C. P. Chen, Y. Wu, and L. Zhou, “An optical display device for augmented reality,” CN Patent 201610112824.7 (2016).

Wikipedia, “Human eye,” https://en.wikipedia.org/wiki/human_eye .

Wikipedia, “Cornea,” https://en.wikipedia.org/wiki/cornea .

University of Notre Dame, “Physics of the eye,” https://www3.nd.edu/~nsl/Lectures/mphysics .

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Addison-Wesley, 2006).

Wikipedia, “Augmented reality,” https://en.wikipedia.org/wiki/augmented_reality .

Wikipedia, “Game of thrones,” https://en.wikipedia.org/wiki/game_of_thrones .

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Display Week (2016), pp. 164–167.

C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).

L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” in The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.

S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic drawing of the proposed RPD. ds is the distance between the SLM and eye. dc is the distance between the corrective lens and eye. D is the center spacing between two adjacent OLEDs. L is the dimension of SLM.
Fig. 2
Fig. 2 Simplified eye structure, which consists of cornea (anterior and posterior), anterior and posterior chambers filled with aqueous humor, pupil, lens (anterior and posterior), vitreous chamber filled with vitreous humor, and retina.
Fig. 3
Fig. 3 Range of accommodation, where Pc = 39 m−1, Pl varies from 2 to 18 m−1, and t = 6 mm. It can be seen that the range of accommodation starts at 40.5 m−1 and ends at 52.8 m−1.
Fig. 4
Fig. 4 Calculated object distance s as a function of the diopter of eye Pe. If the target value of object distance s is set as 3 m, Pe shall be 41.15 m−1.
Fig. 5
Fig. 5 The optical path diagram for imaging the real object, where both SLM and OLEDs are supposed to be transparent. For the real image, light rays emitting from the real object will be first diverged by the corrective lens, and then converged by the eye.
Fig. 6
Fig. 6 The optical path diagram for imaging the virtual object, when merely a single OLED is turned on.
Fig. 7
Fig. 7 The optical path diagrams for imaging multiple virtual objects, when two adjacent OLEDs are simultaneously turned on.
Fig. 8
Fig. 8 Illustration of FOVs for both real and virtual images. FOVr is defined as the angular extent of the corrective lens, whereas FOVv is defined as the angular extent of the SLM.
Fig. 9
Fig. 9 The numbering of surfaces. The object represents either the real or virtual object that is 2 m away from the eye. Surfaces 1 to 2 (S1 to S2) make up the corrective lens. Surfaces 3 to 7 (S3 to S7) make up the eye, of which, S3 is anterior cornea, S4 is posterior cornea, S5 is anterior lens with pupil, S6 is posterior lens, and S7 is retina. In calculating the real image, all surfaces are active. In calculating the virtual image, only S1 is inactive.
Fig. 10
Fig. 10 Calculated MTFs of (a) real and (b) virtual images. For the real image, MTFs for all angles are above 0.4 at 280 cycles/mm. For the virtual image, MTFs for all angles are above 0.4 at 120 cycles/mm.
Fig. 11
Fig. 11 Calculated distortion of (a) real and (b) virtual images. For the real image, the distortion is less than 0.04%. For the virtual image, the distortion is less than 0.73%.
Fig. 12
Fig. 12 (a) Original, (b) real, and (c) virtual images. By comparing the original and simulated images, it can be seen that the real image is identical to the original one despite some chromatic aberration, while the virtual image turns out to be kind of blurred.

Tables (5)

Tables Icon

Table 1 Design parameters for the corrective lens

Tables Icon

Table 2 Parameters for SLM

Tables Icon

Table 3 Parameters used for the simulation

Tables Icon

Table 4 Parameters for aspherical surfaces

Tables Icon

Table 5 Parameters for calculating FOVs

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P e = P c + P l t P c P l
1 s + 1 s = P e
P=(n1)[ 1 R 1 1 R 2 + (n1)d n R 1 R 2 ]
s= s ( P e +P) s 1
O= a s ( s d c d c d s )
a s = a p ( d c d s d c )
O= a p ( s ( P e +P) s 1 ) d c 1 )
θ=2 tan 1 ( O 2s )
D= a p ( 1 d c s )
d s = a p d c a p +D
FO V r =2 tan 1 ( W 2 + H 2 2 d c )
FO V v =2 tan 1 ( L 2 d s )
# of OLEDs= L( horizontal )×L( vertical ) a s
CR= 1+MMTF 1MMTF
M= C R o 1 C R o +1

Metrics