Abstract

We report on two previously unknown non-local effects that have been found to impair Brillouin optical time-domain analysis (BOTDA) sensors that deploy limited extinction ratio (ER) pump pulses. The first one originates in the increased depletion of the pedestal of the pump pulses by the amplified probe wave, which in turn entails a reduced amplification of the probe and a measurement distortion. The second effect is due to the interplay between the transient response of the erbium-doped fiber amplifiers (EDFA) that are normally deployed to amplify the pump and the pedestal of the pump pulses. The EDFA amplification modifies the pedestal that follows the pulses in such a way that it also leads to a distortion of the measured gain spectra after normalization. Both effects are shown to lead to non-local effects in the measurements that have similar characteristics to those induced by pump pulse depletion. In fact, the total depletion factor for calculations of the Brillouin frequency shift (BFS) error in BOTDA sensors is shown to be the addition of the depletion factors linked to the pump pulse as well as the pedestal. A theoretical model is developed to analyze both effects by numerical simulation. Furthermore, the effects are investigated experimentally in long-range BOTDA sensors. The pedestal depletion effect is shown to severely constrain the probe power as well as the minimum ER of the pulses that can be deployed in BOTDA sensors. For instance, it is shown that, in a long-range dual-probe BOTDA, an ER higher that 32-dB, which is above that provided by standard electro-optic modulators (EOM), is necessary to be able to deploy a probe power of −3 dBm, which is the theoretical limit for that type of sensors. Even more severe can be the limitation due to the depletion effect induced by the EDFA transient response. It is found that the impairments brought by this effect are independent of the probe power, hence setting an ultimate limit for the BOTDA sensor performance. Experimentally, a long-range BOTDA deploying a 26-dB ER EOM and a conventional EDFA is shown to exhibit a BFS error higher than 1 MHz even for very small probe power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analysis sensor with pump pulse amplification

Juan José Mompó, Javier Urricelqui, and Alayn Loayssa
Opt. Express 24(12) 12672-12681 (2016)

Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 23(23) 30448-30458 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref]
  2. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
    [Crossref] [PubMed]
  3. S. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, “Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors,” Opt. Lett. 36, 97–99 (2011).
    [Crossref] [PubMed]
  4. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  5. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
    [Crossref]
  6. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
    [Crossref]
  7. A. Minardo and L. Zeni, “Influence of laser phase noise on Brillouin optical time-domain analysis sensors,” Proc. SPIE 9916, 99162T (2016).
    [Crossref]
  8. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  10. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
    [Crossref]
  11. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  12. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwawe Technol. 12(4), 585–590 (1994).
    [Crossref]
  13. A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
    [Crossref] [PubMed]
  14. A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
    [Crossref] [PubMed]
  15. T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
    [Crossref]
  16. Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
    [Crossref]
  17. K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
    [Crossref]

2016 (2)

2015 (2)

2013 (2)

2011 (1)

2010 (1)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2008 (2)

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

2000 (1)

1997 (1)

Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
[Crossref]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

1994 (2)

K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
[Crossref]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwawe Technol. 12(4), 585–590 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Alem, M.

Angulo-Vinuesa, X.

Bao, X.

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwawe Technol. 12(4), 585–590 (1994).
[Crossref]

Chen, L.

Demokan, M. S.

K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
[Crossref]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Domínguez-López, A.

Foaleng, S.

González-Herráez, M.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Ieda, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Jackson, D. A.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
[Crossref]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Ko, K. Y.

K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
[Crossref]

Lecoeuche, V.

Li, W.

Li, Y.

Lin, J.

Loayssa, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

López-Gil, A.

Mafang, S. F.

Martin-Lopez, S.

Martín-López, S.

Minardo, A.

A. Minardo and L. Zeni, “Influence of laser phase noise on Brillouin optical time-domain analysis sensors,” Proc. SPIE 9916, 99162T (2016).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Nakajima, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Pannell, C. N.

Rodríguez-Barrios, F.

Sagues, M.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Sankawa, I.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Shimizu, T.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Shiraki, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Soto, M. A.

Srivastava, A. K.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
[Crossref]

Sun, Y.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
[Crossref]

Tam, H. Y.

K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
[Crossref]

Thévenaz, L.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwawe Technol. 12(4), 585–590 (1994).
[Crossref]

Webb, D. J.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
[Crossref]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Yang, Z.

Zeni, L.

A. Minardo and L. Zeni, “Influence of laser phase noise on Brillouin optical time-domain analysis sensors,” Proc. SPIE 9916, 99162T (2016).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Zornoza, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Zyskind, J. L.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. 3(4), 991–1007 (1997).
[Crossref]

IEEE Photonics Tech. L. (1)

K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photonics Tech. L. 6(12), 1436–1438 (1994).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwawe Technol. (2)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwawe Technol. 12(4), 585–590 (1994).
[Crossref]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwawe Technol. 13(7), 1340–1348 (1995).
[Crossref]

Meas. Sci. Technol. (1)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

A. Minardo and L. Zeni, “Influence of laser phase noise on Brillouin optical time-domain analysis sensors,” Proc. SPIE 9916, 99162T (2016).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Fundamentals of the theoretical model. The fiber is divided into segments equal to the spatial resolution and the interaction between pump and probe is solved for each segment i. The waves are then counter-propagated in sucessive iterations.
Fig. 2
Fig. 2 Schematic description of probe and pulse wave interaction along the fiber and its consequences in the measured Brillouin gain spectrum (BGS).
Fig. 3
Fig. 3 Resultant depletion factor, d, of the pump pulses as a function of their ER in a long-range BOTDA sensor.
Fig. 4
Fig. 4 (a) Brillouin gain of the probe wave. The traces are depicted in terms of time-of-flight of the pump pulse with an added axis (top) with the translation to location along the fiber. (b) Values of pulse depletion factor, d, pedestal depletion factor, dP and total depletion factor, dT.
Fig. 5
Fig. 5 (a) BOTDA gain depletion spectrum induced by the different spectra used in the measurement normalization process. (b) Distortion of the measured spectrum due to gain depletion.
Fig. 6
Fig. 6 For a maximum tolerable 1-MHz error in BOTDA measurement with a pump pulse of 20 dBm peak power and 10 ns duration: (a) maximum probe wave power per-sideband that can be deployed, (b) length of the sensing fiber where the total depletion factor reaches its maximum value and (c) depletion factor d, dP and dT in these conditions.
Fig. 7
Fig. 7 Experimental setup deployed to demonstrate the effects of the pump pulse ER on BOTDA sensors.
Fig. 8
Fig. 8 BOTDA trace distortion due to the ER of the pump pulse. (a) Dependence on the ER level; (b) Dependence on the probe wave power for a fixed ER of 23 dB. The black line shows the same for an ER of 45 dB, for comparison.
Fig. 9
Fig. 9 Depletion factor dp and d dependence on the probe wave power when deploying pump pulses with 23-dB ER.
Fig. 10
Fig. 10 Measurement error induced by 25-dB, 23-dB and 21-dB ER pump wave in different positions of the fiber for a −3 dBm per sideband probe wave power: (a) at a distance of 5 km and (b) at the end of the fiber.
Fig. 11
Fig. 11 Experimental setup deployed for the characterization of the EDFA transient responses to pulsed signal amplification.
Fig. 12
Fig. 12 Variation of the EDFA gain after the amplification of pump pulses with ER of (a) 20 dB, (b) 23 dB and (c) 26 dB. Three different commercial EDFA are measured.
Fig. 13
Fig. 13 Experimental and theoretical BOTDA trace distortion due to EDFA transient response for different pump pulse ER values and different EDFA, (a) for EDFA I and (b) EDFA II.
Fig. 14
Fig. 14 Resultant Brillouin frequency shift along the hotspots deployed using the EDFA I: (a) hotspot I (b) hotspot II.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d d z P S ( z ) = g B ( ν , z ) A eff P S ( z ) P P ( z ) + α P S ( z )
d d z P P ( z ) = g B ( ν , z ) A eff P S ( z ) P P ( z ) α P P ( z )
P S ( ( i 1 ) u ) = P S ( i u ) exp ( g B ( ν , z ) A eff P P ( ( i 1 ) u ) u ) exp ( α u )
P P ( i u ) = P P ( ( i 1 ) u ) exp ( g B ( ν , z ) A eff P S ( ( i 1 ) u ) u ) exp ( α u )
d P = G P G P G P
d T ( ν , z ) = d ( ν , z ) + d P ( ν , z )

Metrics