Abstract

We realize a transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber (HCPCF), utilizing a micro-optical coupler formed by pairs of lenses and one filter, which is a new type of resonator fiber optic gyro based on the HCPCF (HC-RFOG). We build a mathematical model of the polarization noise based on the transfer function of this novel transmissive single-beam-splitter resonator. We construct a HC-RFOG and simulate and validate the effects of polarization noise on the gyro system. In addition, we apply an effective method to suppress the polarization noise and prove its efficacy through experiments. The bias stability of the gyro system is successfully improved from 25 °/h to 2 °/h, which indicates a remarkable advance of performance of HC-RFOG.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of long-term stability of hollow-core photonic-crystal fiber optic gyro based on single-polarization resonator

Hongchen Jiao, Lishuang Feng, Ning Liu, and Zhaohua Yang
Opt. Express 26(7) 8645-8655 (2018)

Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Junjie Wang, Kai Wang, and Zhaohua Yang
Opt. Lett. 42(15) 3016-3019 (2017)

Design of low-crosstalk polarizing resonator and homologous multi-frequency differential detection for hollow-core photonic-crystal fiber optic gyro

Hongchen Jiao, Lishuang Feng, Chunqi Zhang, Ning Liu, Yonggui Zhang, and Honghao Ma
Opt. Express 27(14) 19536-19547 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Barbour, “Inertial components - past, present, and future,” in AIAA Guidance, Navigation, and Control Conference, (C. S. Draper Lab, 2001).
  2. S. Divakaruni and S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Proceedings of Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC2.
  3. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
    [PubMed]
  4. M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
  6. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
    [PubMed]
  7. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Proceedings of Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ME2.
  8. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonator fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
  9. L. Feng, X. Ren, X. Deng, and H. Liu, “Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure,” Opt. Express 20(16), 18202–18208 (2012).
    [PubMed]
  10. L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
  11. Z. K. Ioannidis, R. Kadiwar, and I. P. Giles, “Polarization mode coupling in highly birefringent optical-fiber ring resonators,” Opt. Lett. 14(10), 520–522 (1989).
    [PubMed]
  12. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, “Bias drift reduction in polarization-maintaining fiber gyroscope,” Opt. Lett. 12(3), 214–216 (1987).
    [PubMed]
  13. M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).
  14. K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
  15. H. Jiao, L. Feng, J. Wang, K. Wang, and Z. Yang, “Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber,” Opt. Lett. 42(15), 3016–3019 (2017).
    [PubMed]
  16. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
  17. L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
    [PubMed]
  18. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation,” Appl. Opt. 54(1), 114–122 (2015).
    [PubMed]
  19. Y. Yan, H. Ma, L. Wang, H. Li, and Z. Jin, “Effect of Fresnel reflections in a hybrid air-core photonic-bandgap fiber ring-resonator gyro,” Opt. Express 23(24), 31384–31392 (2015).
    [PubMed]
  20. L. Feng, Y. Zhi, M. Lei, and J. Wang, “Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method,” Opt. Laser Technol. 62, 109–114 (2014).

2017 (1)

2015 (3)

2014 (2)

L. Feng, Y. Zhi, M. Lei, and J. Wang, “Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method,” Opt. Laser Technol. 62, 109–114 (2014).

L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
[PubMed]

2012 (3)

2007 (1)

1992 (1)

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).

1990 (2)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

1989 (1)

1987 (1)

1986 (1)

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).

1984 (1)

Blin, S.

Carrara, S. L. A.

Chen, Z.

Deng, X.

Digonnet, M. J. F.

Fan, S.

Feng, L.

Giles, I. P.

Higashiguchi, M.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[PubMed]

Hotate, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[PubMed]

Ioannidis, Z. K.

Iwatsuki, K.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[PubMed]

Jiao, H.

H. Jiao, L. Feng, J. Wang, K. Wang, and Z. Yang, “Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber,” Opt. Lett. 42(15), 3016–3019 (2017).
[PubMed]

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).

Jin, Z.

Kadiwar, R.

Kim, B. Y.

Kim, H. K.

Kino, G. S.

Kyuma, K.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Lei, M.

L. Feng, Y. Zhi, M. Lei, and J. Wang, “Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method,” Opt. Laser Technol. 62, 109–114 (2014).

Li, H.

Liu, H.

Ma, H.

Ren, X.

Shaw, H. J.

Song, W.

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).

Tai, S.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Takahashi, M.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Takiguchi, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).

Tang, Y.

Terrel, M. A.

Wang, J.

Wang, K.

Wang, L.

Wang, Q.

Wang, W.

Yan, Y.

Yang, Z.

Yu, X.

Zhi, Y.

Appl. Opt. (3)

Electron. Commun. Jpn. (1)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

J. Lightwave Technol. (5)

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).

M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonator fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8(5), 811–816 (1990).

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr Effect in optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).

Opt. Express (3)

Opt. Laser Technol. (1)

L. Feng, Y. Zhi, M. Lei, and J. Wang, “Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method,” Opt. Laser Technol. 62, 109–114 (2014).

Opt. Lett. (3)

Proc. SPIE (1)

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).

Other (3)

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Proceedings of Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ME2.

N. Barbour, “Inertial components - past, present, and future,” in AIAA Guidance, Navigation, and Control Conference, (C. S. Draper Lab, 2001).

S. Divakaruni and S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Proceedings of Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Transmissive HCPCF ring resonator with single optical beam-splitter. (a) Structure of the novel resonator. (b) Coupling structure and light path of the resonator.
Fig. 2
Fig. 2 Simulations of characteristic parameters of resonator. (a) Resonant curves, (b) fineness F, (c) transmittance ƞ, and (d) key parameter Fƞ of the resonator.
Fig. 3
Fig. 3 Simulation of intensity transfer function I of a single path of the resonator.
Fig. 4
Fig. 4 Simulation of intensity transfer function I with different φ.
Fig. 5
Fig. 5 Simulation of gyro bias considering undesired polarization. (a) Gyro bias flowing with Δσ and ω(τx – τy). (b) Intercepted curves of gyro bias at ω(τx – τy) = –0.3 × 2π, 0, and 0.3 × 2π.
Fig. 6
Fig. 6 (a) HCPCF resonator and the (b) measured resonant curve. (Ref [15], Fig. 2 and Fig. 3)
Fig. 7
Fig. 7 Structure of the HC-RFOG system.
Fig. 8
Fig. 8 Comparison between simulation and test result of gyro bias in a whole temperature circle (equivalent to ω(τx – τy) in the range of 2π).
Fig. 9
Fig. 9 Verification experiment of PCPM.
Fig. 10
Fig. 10 Static tests of the gyro system analyzed by Allan variance method. The bias stability is improved from 25 °/h to 2 °/h.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E= r α c α l e iωτ 1( 1r ) α c α l e iωτ E 0 F= FSR FWHM = π arccos( 2( 1r ) α c α l 1+ ( 1r ) 2 α c α l ) η= | E 0 | 2 r 2 α c 2 α l ( 1( 1r ) α c α l ) 2
E 0_CW =[ cos( φ CW ) sin( φ CW ) e i σ CW ] ; E 0_CCW =[ cos( φ CCW ) sin( φ CCW ) e i σ CCW ]
R r1_CW = R r1_CCW = R r2_CW = R r2_CCW =[ r α c 0 0 r α c ]C= R r1 = R r2 R t_CW = R t_CCW =[ ( 1r ) α c 0 0 ( 1r ) α c ]C= R t T l_CW =[ α l e i( ω τ x + θ S /2 ) 0 0 α l e i( ω τ y + θ S /2 ) ] T l_CCW =[ α l e i( ω τ x θ S /2 ) 0 0 α l e i( ω τ y θ S /2 ) ]
C=[ cos( Δθ ) sin( Δθ ) sin( Δθ ) cos( Δθ ) ]
Q CW = T l_CW R t ; Q CCW = T l_CCW R t E CW = i=1 R r2 Q CW ( i1 ) T l R r1 E 0_CW E CCW = i=1 R r2 Q CCW ( i1 ) T l R r1 E 0_CCW I CW = E CW E CW ; I CCW = E CCW E CCW
I CW = p 0 + p 1 cos( Φ+ θ S /2 )+ p 2 sin( Φ+ θ S /2 ) q 0 + q 1 cos( Φ+ θ S /2 )+ q 2 sin( Φ+ θ S /2 )+ q 3 cos( 2Φ+ θ S )+ q 4 sin( 2Φ+ θ S ) I CCW = u 0 + u 1 cos( Φ θ S /2 )+ u 2 sin( Φ θ S /2 ) v 0 + v 1 cos( Φ θ S /2 )+ v 2 sin( Φ θ S /2 )+ v 3 cos( 2Φ θ S )+ v 4 sin( 2Φ θ S )
I CW = a CW ( ϕ+ θ S /2 ) 2 + b CW ( ϕ+ θ S /2 )+ c CW l CW ( ϕ+ θ S /2 ) 2 + m CW ( ϕ+ θ S /2 )+ n CW I CCW = a CCW ( ϕ θ S /2 ) 2 + b CCW ( ϕ θ S /2 )+ c CCW l CCW ( ϕ θ S /2 ) 2 + m CCW ( ϕ θ S /2 )+ n CCW
d I CW dϕ = A CW ( ϕ+ θ S /2 ) 2 + B CW ( ϕ+ θ S /2 )+ C CW ( l CW ( ϕ+ θ S /2 ) 2 + m CW ( ϕ+ θ S /2 )+ n CW ) 2 d I CCW dϕ = A CCW ( ϕ θ S /2 ) 2 + B CCW ( ϕ θ S /2 )+ C CCW ( l CCW ( ϕ θ S /2 ) 2 + m CCW ( ϕ θ S /2 )+ n CCW ) 2
ϕ 0_CW = B CW B CW 2 4 A CW C CW 2 A CW θ S /2 ϕ 0_CCW = B CCW B CCW 2 4 A CCW C CCW 2 A CCW + θ S /2 Ω pl = λFSR 2πD ( ϕ 0_CCW ϕ 0_CW ) ΔΩ= Ω pl Ω input = λFSR 2πD ( ϕ 0_CW ϕ 0_CCW θ S )
R r1_CW = C 2 [ r x α c 0 0 r y α c ] C 1 R r2_CW = C 4 [ r x α c 0 0 r y α c ] C 3 R t_CW = C 2 [ ( 1 r x ) α c 0 0 ( 1 r y ) α c ] C 3 T l_CW =[ α l e i( ω τ x + θ S /2 ) 0 0 α l e i( ω τ y + θ S /2 ) ] | R r1_CCW = C 3 [ r x α c 0 0 r y α c ] C 4 R r2_CCW = C 1 [ r x α c 0 0 r y α c ] C 2 R t_CCW = C 3 [ ( 1 r x ) α c 0 0 ( 1 r y ) α c ] C 2 T l_CCW =[ α l e i( ω τ x θ S /2 ) 0 0 α l e i( ω τ y θ S /2 ) ]
C i =[ cos( Δ θ i ) sin( Δ θ i ) sin( Δ θ i ) cos( Δ θ i ) ]
ω( τ x τ y ) T = ωLΔn T =ωLΔn( 1 L L T + 1 Δn Δn T )

Metrics