Abstract

Using a dual-wavelength source, a single optical signal is distributed over two wavelengths. This approach is used to reduce power excursions due to optical circuit switching in ROADM systems. In a multi-hop optical transmission system with 100Gbps PM-QPSK signals switched over five ROADMs and 265 km of single mode fiber (SMF), power excursions are kept within ± 0.2 dB using dual-wavelength sources. A cumulative distribution function (CDF) of channel power excursions is generated from measurements of over 100 random channel loadings for four different channel loading plans. Using dual-wavelength sources, power excursions of up to ± 6 dB are reduced below ± 1.5 dB for 99% and ± 0.5 dB for 71.4% of the cases while switching up to 30 channels.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep-Neural-Network-Based Wavelength Selection and Switching in ROADM Systems

Weiyang Mo, Craig L. Gutterman, Yao Li, Shengxiang Zhu, Gil Zussman, and Daniel C. Kilper
J. Opt. Commun. Netw. 10(10) D1-D11 (2018)

Excursion-Free Dynamic Wavelength Switching in Amplified Optical Networks

Atiyah S. Ahsan, Colm Browning, Michael S. Wang, Keren Bergman, Daniel C. Kilper, and Liam P. Barry
J. Opt. Commun. Netw. 7(9) 898-905 (2015)

Channel Power Excursions From Single-Step Channel Provisioning

Joseph Junio, Daniel C. Kilper, and Vincent W. S. Chan
J. Opt. Commun. Netw. 4(9) A1-A7 (2012)

References

  • View by:
  • |
  • |
  • |

  1. “Cisco Virtual Network Index” [Online]. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
  2. “Cisco Global Cloud Index: Forecast and Methodology 2013–2018,” Cisco White Paper [Online]. http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf#_ftnref1
  3. A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
  4. D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).
  5. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).
  6. “Introduction to EDFA Technology,” Finisar White Paper, June 2009. [Online]. https://www.finisar.com/sites/default/files/resources/Introduction%20to%20EDFA%20technology.pdf
  7. C. Tian and S. Kinoshita, “Analysis and control of transient dynamics of EDFA pumped by 1480-and 980-nm lasers,” J. Lightwave Technol. 21(8), 1728 (2003).
  8. L. Rapp, “Transient performance of erbium-doped fiber amplifiers using a new feedforward control taking into account wavelength dependence,” J. Opt. Commun. Netw. 28(2), 82 (2007).
  9. L. E. Nelson, G. Zhang, N. Padi, C. Skolnick, K. Benson, T. Kaylor, S. Iwamatsu, R. Inderst, F. Marques, D. Fonseca, M. Du, T. Downs, T. Scherer, C. Cole, Y. Zhou, P. Brooks, and A. Schubert, “SDN-Controlled 400GbE end-to-end service using a CFP8 client over a deployed, commercial flexible ROADM system,” Optical Fiber Communication Conference Postdeadline, Th5A. 1, 2017.
  10. D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).
  11. Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.
  12. Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).
  13. U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.
  14. K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).
  15. K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference, W3E.4, 2014.
  16. A. S. Ahsan, C. Browning, M. S. Wang, K. Bergman, D. C. Kilper, and L. P. Barry, “Excursion-Free Dynamic Wavelength Switching in Amplified Optical Networks,” JOCN 7(9), 2015.
  17. S. Zhu, W. Mo, D. C. Kilper, A. P. Anthur, and L. Barry, “Dual Laser Switching for Dynamic Wavelength Operation in Amplified Optical Transmission,” Optical Fiber Communication Conf. (OFC), Th2A.44 2017.
  18. R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).
  19. J.A. O’Dowd, K. Shi, A. J. Walsh, V. M. Bessler, F. Smyth, T. N. Huynh, L. P. Barry, and A.D. Ellis, “Time Resolved Bit Error Rate Analysis of a Fast Switching Tunable Laser for Use in Optically Switched Networks,” JOCN 4(9), A77 (2012).
  20. J. Junio, D. C. Kilper, and V.W.S. Chan, “Channel Power Excursions from Single-Step Channel Provisioning,” JOCN 4(9), A1 (2012).
  21. J. Zyskind and A. Strivastava, Optical Amplifiers for Advanced Communications Systems and Network (Academic, 2010), Chapter 8.
  22. T. J. Xia, G. A. Wellbrock, Y. Huang, E. Ip, M. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition, pp. 1–3, 2011.

2017 (1)

2016 (1)

K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).

2014 (2)

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

2012 (1)

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

2008 (1)

D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).

2007 (1)

L. Rapp, “Transient performance of erbium-doped fiber amplifiers using a new feedforward control taking into account wavelength dependence,” J. Opt. Commun. Netw. 28(2), 82 (2007).

2003 (1)

Andrade, A.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Bergman, K.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Carvalho, H.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Cesar, A. C.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Chan, V. W. S.

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Chandrasekhar, S.

D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).

Chiu, A.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Cho, P. B.

Conforti, E.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Doverspike, R.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Feuer, M. D.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Garrich, M.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Gutterman, C. L.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Huang, Y.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Ishii, K.

K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).

Kilper, D. C.

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).

Kinoshita, S.

Kurumida, J.

K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).

Lourdiane, M.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Magil, P.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Maher, R.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

Mahimkar, A.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Margarido, F.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Mavrogiorigis, E.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Millar, D. S.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

Monga, I.

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Moura, U.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Namiki, S.

K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).

Oliveira, J.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Pastor, J.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Porter, G.

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Rapp, L.

L. Rapp, “Transient performance of erbium-doped fiber amplifiers using a new feedforward control taking into account wavelength dependence,” J. Opt. Commun. Netw. 28(2), 82 (2007).

Rauschenbach, K.

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Samadi, P.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Samoud, W.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

Savory, S. J.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Svolenski, M.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Thomsen, B. C.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

Tian, C.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Ware, C.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

White, C. A.

D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).

Woodward, S. L.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Yates, J.

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

Zussman, G.

Y. Huang, C. L. Gutterman, P. Samadi, P. B. Cho, W. Samoud, C. Ware, M. Lourdiane, G. Zussman, and K. Bergman, “Dynamic mitigation of EDFA power excursions with machine learning,” Opt. Express 25(4), 2245–2258 (2017).

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

IEEE Photonics J. (1)

K. Ishii, J. Kurumida, and S. Namiki, “Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations,” IEEE Photonics J. 8(1), 7901713 (2016).

J. Lightw. Tech (2)

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks,” J. Lightw. Tech 30(24), 3924 (2012).

D. C. Kilper, C. A. White, and S. Chandrasekhar, “Control of Channel Power Instabilities in Constant-Gain Amplified Transparent Networks Using Scalable Mesh Scheduling,” J. Lightw. Tech 26(1), 108 (2008).

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

L. Rapp, “Transient performance of erbium-doped fiber amplifiers using a new feedforward control taking into account wavelength dependence,” J. Opt. Commun. Netw. 28(2), 82 (2007).

Opt. Express (1)

Opt. Photonics News (1)

D. C. Kilper, K. Bergman, V. W. S. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical Networks Come of Age,” Opt. Photonics News 25(9), 50–57 (2014).

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317 (2014).

Other (14)

“Introduction to EDFA Technology,” Finisar White Paper, June 2009. [Online]. https://www.finisar.com/sites/default/files/resources/Introduction%20to%20EDFA%20technology.pdf

“Cisco Virtual Network Index” [Online]. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

“Cisco Global Cloud Index: Forecast and Methodology 2013–2018,” Cisco White Paper [Online]. http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf#_ftnref1

A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P. Magil, E. Mavrogiorigis, J. Pastor, S. L. Woodward, and J. Yates, “Bandwidth on demand for inter-data center communication,” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.

L. E. Nelson, G. Zhang, N. Padi, C. Skolnick, K. Benson, T. Kaylor, S. Iwamatsu, R. Inderst, F. Marques, D. Fonseca, M. Du, T. Downs, T. Scherer, C. Cole, Y. Zhou, P. Brooks, and A. Schubert, “SDN-Controlled 400GbE end-to-end service using a CFP8 client over a deployed, commercial flexible ROADM system,” Optical Fiber Communication Conference Postdeadline, Th5A. 1, 2017.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergman, “A Machine Learning Approach for Dynamic Optical Channel Add/Drop Strategies that Minimize EDFA Power Excursions,” European Conference on Optical Communication, 2016.

J.A. O’Dowd, K. Shi, A. J. Walsh, V. M. Bessler, F. Smyth, T. N. Huynh, L. P. Barry, and A.D. Ellis, “Time Resolved Bit Error Rate Analysis of a Fast Switching Tunable Laser for Use in Optically Switched Networks,” JOCN 4(9), A77 (2012).

J. Junio, D. C. Kilper, and V.W.S. Chan, “Channel Power Excursions from Single-Step Channel Provisioning,” JOCN 4(9), A1 (2012).

J. Zyskind and A. Strivastava, Optical Amplifiers for Advanced Communications Systems and Network (Academic, 2010), Chapter 8.

T. J. Xia, G. A. Wellbrock, Y. Huang, E. Ip, M. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition, pp. 1–3, 2011.

K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference, W3E.4, 2014.

A. S. Ahsan, C. Browning, M. S. Wang, K. Bergman, D. C. Kilper, and L. P. Barry, “Excursion-Free Dynamic Wavelength Switching in Amplified Optical Networks,” JOCN 7(9), 2015.

S. Zhu, W. Mo, D. C. Kilper, A. P. Anthur, and L. Barry, “Dual Laser Switching for Dynamic Wavelength Operation in Amplified Optical Transmission,” Optical Fiber Communication Conf. (OFC), Th2A.44 2017.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA Gain Adjustment Cognitive Methodology for Dynamic Optical Networks,” European Conference on Optical Communication, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 EDFA AGC introduces power excursions: (a) positive channel power excursions occur when channel at λ2 is added, due to the gain changes to maintain AGC condition; (b) by adding channels at both λ2 and λ3, power excursions cancel out, and gain profile is unchanged.
Fig. 2
Fig. 2 Experimental setup. (a) 5-ROADM network separated by 4 spans with 2 AGC EDFAs on each span; (b) 100G PM-QPSK transmitter diagram (TX); (c) 100G PM-QPSK receiver diagram (RX).
Fig. 3
Fig. 3 Transmission performance using a dual-wavelength source. (a) BER vs. OSNR of back to back and after 265 km (4 span) transmission; (b) cascading power excursions on active channel 45, when a new single wavelength channel 85 is added; (c) power excursions vs. active channel location using a dual-wavelength source and a single-wavelength source; (d) BER and OSNR vs. active channel.
Fig. 4
Fig. 4 Comparisons of dual-wavelength sources and single-wavelength sources. The x-axis represents the number of new channels added at a time. (a) Short-hop traffic dominated; (b) long-hop traffic dominated; (c) active channels are uniformly distributed; (d) active channels are distributed on long wavelengths.
Fig. 5
Fig. 5 CDF of power excursions with different channel loading plans. Increased numbers of active channels reduce the power excursions, and the normal distribution outperforms the uniform distribution.
Fig. 6
Fig. 6 Power excursions vs. the numbers of new single-wavelength channels. Centermost wavelength assignment gives the smallest maximum excursions. (a) 10 active channels; (b) 30 active channels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P o,k =( j=1 N P i,j / j=1 N G j P i,j ) G T G k P i,k = G k P i,k
P o,k =( j=1 N' P i,j / j=1 N' G j P i,j ) G T G k P i,k =( G k ΔG) P i,k
Δ P o,k (dB)=10* log 10 ( P o,k P o,k )=10* log 10 (ΔG)

Metrics