Abstract

A passively mode-locked Yb3+-doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb3+-doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO2/Ta2O5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers

Yunxiu Ma, Xiushan Zhu, Luyun Yang, Minghong Tong, Robert A. Norwood, Huai Wei, Yingbo Chu, Haiqing Li, Nengli Dai, Jinggang Peng, Jinyan Li, and Nasser Peyghambarian
Opt. Express 27(10) 14487-14504 (2019)

A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2GHz

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury
Opt. Express 15(20) 13155-13166 (2007)

High-repetition-rate ultrafast fiber lasers

Huihui Cheng, Wenlong Wang, Yi Zhou, Tian Qiao, Wei Lin, Yuankai Guo, Shanhui Xu, and Zhongmin Yang
Opt. Express 26(13) 16411-16421 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
    [PubMed]
  2. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
  3. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [PubMed]
  4. A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).
  5. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [PubMed]
  6. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [PubMed]
  7. J. Lim, H. W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
    [PubMed]
  8. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [PubMed]
  9. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [PubMed]
  10. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40(7), 1374–1377 (2015).
    [PubMed]
  11. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
  12. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [PubMed]
  13. C. Li, G. Wang, T. Jiang, A. Wang, and Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
    [PubMed]
  14. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [PubMed]
  15. P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
  16. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).
  17. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [PubMed]
  18. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
  19. I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong, and M. E. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF9.
  20. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [PubMed]
  21. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [PubMed]
  22. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [PubMed]
  23. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [PubMed]
  24. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [PubMed]
  25. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40(7), 893–899 (2004).
  26. N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

2018 (1)

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).

2016 (2)

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[PubMed]

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

2015 (2)

2014 (2)

2013 (2)

2012 (3)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[PubMed]

2011 (2)

2010 (2)

2009 (1)

2008 (2)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[PubMed]

2007 (1)

2004 (1)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40(7), 893–899 (2004).

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

1999 (1)

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

1990 (1)

N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[PubMed]

Avramopoulos, H.

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[PubMed]

Byun, H.

Chang, G.

Chavez-Pirson, A.

Chen, D.

Chen, H. W.

Chen, H.-W.

Chen, J.

Cheng, H.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[PubMed]

Diddams, S. A.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Feng, G.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Finlayson, N.

N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

Fraser, D.

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

Gao, X.

Geng, J.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Hatziefremidis, A.

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

Herda, R.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40(7), 893–899 (2004).

Hu, L.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Ippen, E. P.

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[PubMed]

Jiang, S.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Jiang, T.

Kärtner, F. X.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

Kolodziejski, L. A.

Kuan, P.-W.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Li, C.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Li, K.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Li, X.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Lim, J.

Lin, W.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[PubMed]

Liu, J.

Liu, K.

Liu, X.

Luo, T.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).

Ma, Y.

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[PubMed]

Martinez, A.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[PubMed]

McFerran, J. J.

Motamedi, A.

Nenadovic, L.

Newbury, N. R.

Nguyen, D.

Niu, F.

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40(7), 893–899 (2004).

Papadopoulos, D. N.

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[PubMed]

Peng, M.

Petrich, G. S.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Qian, Q.

Qiao, T.

Qiu, J.

Sander, M. Y.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Schlager, J. B.

Shen, H.

Shen, S.

Stegeman, G. E.

N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

Swann, W. C.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Tan, F.

Thapa, R.

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Wang, A.

Wang, G.

Wang, J.

Wang, P.

Wang, Q.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Wei, X.

Wright, E. M.

N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

Wu, K.

Xu, J.

Xu, S.

Yamashita, S.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[PubMed]

Yang, Z.

Yu, C.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Zhang, L.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

Zhang, Q.

Zhang, W.

Zhang, X.

Zhang, Z.

Zong, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).

IEEE J. Quantum Electron. (2)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40(7), 893–899 (2004).

N. Finlayson, E. M. Wright, and G. E. Stegeman, “Nonlinear optical pulse propagation in a semiconductor medium in the transient regime-I: temporal and spectral effects,” IEEE J. Quantum Electron. 26(4), 770–777 (1990).

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).

IEEE Photonics Technol. Lett. (1)

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[PubMed]

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[PubMed]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[PubMed]

Nucl. Instrum. Meth. A (1)

A. Hatziefremidis, D. N. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl. Instrum. Meth. A 431(1–2), 46–52 (1999).

Opt. Express (4)

Opt. Lett. (7)

Proc. SPIE (1)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Other (1)

I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong, and M. E. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic setup of the 5 GHz Yb3+-doped all-fiber oscillator. (b) Picture of the laser cavity, along with the temperature control modules. LD, laser diode; PC, polarization controller; WDM, wavelength division multiplexer; DF, dielectric films; YDF, Yb3+-doped fiber; SESAM, semiconductor saturable absorber mirror; and TC, temperature control.
Fig. 2
Fig. 2 (a) Variation of the output power with the pump power, and the mode-locked pump threshold observed was as low as 42 mW. (b) Optical spectrum of the fundamental mode-locking operation at a pump power of 60 mW. (c) Measured autocorrelation trace of mode-locked pulse (blue square) and Sech2 fit trace (red line). (d) Typical pulse train of fundamental mode-locked fiber laser with 4.95 GHz repetition rate. (e) Measured RF spectrum of the fundamental mode-locking operation. Inset: the broad-span RF output spectrum.
Fig. 3
Fig. 3 Spectra of wavelength (a) and repetition rate (b) tunable mode-locked operation at different YDF temperatures controlled by TC1. (c) False color map of optical spectra of high-repetition-rate mode-locked oscillator recorded for 48 h, one datum per half-hour. While recording the data, TC1 and TC2 were maintained at 25°C and 17°C, respectively.

Metrics