Abstract

The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accuracy enhancement of laser induced breakdown spectroscopy by safely low-power discharge

Xianshuang Wang, An Li, Nasrullah Wazir, Shiqi Huang, Shuai Guo, Liang Liang, Min Zhang, Bingsuo Zou, Yan Hao, Feng He, Yufeng Bai, Weipeng Sun, Mulin Hu, and Ruibin Liu
Opt. Express 26(11) 13973-13984 (2018)

Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy

Yangting Fu, Zongyu Hou, and Zhe Wang
Opt. Express 24(3) 3055-3066 (2016)

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, and Y.F. Lu
Opt. Express 21(15) 18188-18195 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
  2. W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
    [PubMed]
  3. E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).
  4. H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).
  5. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).
  6. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).
  7. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
    [PubMed]
  8. M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).
  9. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [PubMed]
  10. Y. Fu, Z. Hou, and Z. Wang, “Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy,” Opt. Express 24(3), 3055–3066 (2016).
    [PubMed]
  11. S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).
  12. Y. Fu, Z. Hou, and Z. Wang, “Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy,” Opt. Express 24(3), 3055–3066 (2016).
    [PubMed]
  13. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
  14. C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).
  15. D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).
  16. Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
  17. J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).
  18. L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).
  19. R. Ding and N. Bowler, “Permittivity and electrical breakdown response of nylon 6 to chemical exposure,” IEEE Trans. Dielectr. Electr. Insul. 22, 1151–1160 (2015).
  20. G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).
  21. D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).
  22. T. Shiozawa and K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–575 (2016).
  23. Y. Huang, “Reflection and transmission of electromagnetic waves by a dielectric medium moving in an arbitrary direction,” J. Appl. Phys. 76(5), 2575 (1994).

2017 (1)

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

2016 (4)

T. Shiozawa and K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–575 (2016).

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).

Y. Fu, Z. Hou, and Z. Wang, “Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy,” Opt. Express 24(3), 3055–3066 (2016).
[PubMed]

Y. Fu, Z. Hou, and Z. Wang, “Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy,” Opt. Express 24(3), 3055–3066 (2016).
[PubMed]

2015 (3)

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

R. Ding and N. Bowler, “Permittivity and electrical breakdown response of nylon 6 to chemical exposure,” IEEE Trans. Dielectr. Electr. Insul. 22, 1151–1160 (2015).

2014 (2)

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

2013 (2)

2012 (1)

2010 (2)

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

2009 (2)

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).

2008 (2)

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).

H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).

2005 (2)

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

1999 (1)

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

1994 (1)

Y. Huang, “Reflection and transmission of electromagnetic waves by a dielectric medium moving in an arbitrary direction,” J. Appl. Phys. 76(5), 2575 (1994).

Bowler, N.

R. Ding and N. Bowler, “Permittivity and electrical breakdown response of nylon 6 to chemical exposure,” IEEE Trans. Dielectr. Electr. Insul. 22, 1151–1160 (2015).

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

Chen, A.

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Chen, M.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).

Costello, J. T.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Crosley, D. R.

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

Ding, R.

R. Ding and N. Bowler, “Permittivity and electrical breakdown response of nylon 6 to chemical exposure,” IEEE Trans. Dielectr. Electr. Insul. 22, 1151–1160 (2015).

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

Erbulut, D. U.

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

Fallon, C.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).

Faris, G. W.

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

Fichet, P.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

Fu, Y.

Furman, E.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Gallou, C.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).

Gao, M.

Gautier, C.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

Guo, J.

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Guo, L.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Guo, L. B.

Hao, Z.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Hao, Z. Q.

Hayden, P.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Hazama, K.

T. Shiozawa and K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–575 (2016).

He, X.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

He, X. N.

Horn, M. W.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Hou, Z.

Huang, Y.

Y. Huang, “Reflection and transmission of electromagnetic waves by a dielectric medium moving in an arbitrary direction,” J. Appl. Phys. 76(5), 2575 (1994).

Jin, M.

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Kessler, M. R.

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

L’Hermite, D.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

Lacour, J. L.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

Lacour, J.-L.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

Lanagan, M. T.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Li, C.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Li, F.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Li, H. U.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Li, K.

Li, L.

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

Li, X.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Li, X. Y.

Li, Z.

Liu, J.

Lu, Y.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Lu, Y. F.

Masood, S. H.

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

Meng, D.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Menut, D.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

Min, C.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Mingjun, M. A.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Mujawar, M.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Ni, W.

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).

Qian, H.

Ren, Z.

Robledo-Martinez, A.

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).

Sahul, R.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Salmon, L.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).

Sánchez-Aké, C.

H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).

Sbarski, I.

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

Sethi, G.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Shao, J.

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Shen, M.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[PubMed]

Shiozawa, T.

T. Shiozawa and K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–575 (2016).

Singh, S. C.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Smith, G. P.

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

Sobral, H.

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).

H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).

Tewari, P.

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

Tran, V. N.

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

Villagrán-Muniz, M.

H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).

Vors, E.

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).

Wang, T.

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Wang, Y.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).

Wang, Z.

Xie, Z. Q.

Xiong, W.

Yalçin, S.

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

Yang, Y. U.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Yeates, P.

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Yin, W.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Yoon, S. H.

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

Yu, Y.

Yuan, T.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).

Zeng, X.

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

Zeng, X. Y.

Zhao, N.

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

Zhou, W.

Appl. Opt. (1)

Appl. Phys. B (1)

Ş. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, “In uence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).

IEEE Trans. Compon. Packag. Tech. (1)

G. Sethi, R. Sahul, C. Min, P. Tewari, E. Furman, M. W. Horn, and M. T. Lanagan, “Dielectric Response of Tantalum Oxide Deposited on Polyethylene Terephthalate (PET) Film by Low-Temperature Pulsed-DC Sputtering for Wound Capacitors,” IEEE Trans. Compon. Packag. Tech. 32, 915–925 (2009).

IEEE Trans. Dielectr. Electr. Insul. (2)

L. Li, N. Bowler, M. R. Kessler, and S. H. Yoon, “Dielectric response of PTFE and ETFE wiring insulation to thermal exposure,” IEEE Trans. Dielectr. Electr. Insul. 17, 1234–1241 (2010).

R. Ding and N. Bowler, “Permittivity and electrical breakdown response of nylon 6 to chemical exposure,” IEEE Trans. Dielectr. Electr. Insul. 22, 1151–1160 (2015).

J. Anal. At. Spectrom. (2)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).

C. Li, L. Guo, X. He, Z. Hao, X. Li, M. Shen, X. Zeng, and Y. Lu, “Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement,” J. Anal. At. Spectrom. 29, 638–643 (2014).

J. Appl. Phys. (1)

Y. Huang, “Reflection and transmission of electromagnetic waves by a dielectric medium moving in an arbitrary direction,” J. Appl. Phys. 76(5), 2575 (1994).

J. Appl. Polym. Sci. (1)

D. U. Erbulut, S. H. Masood, V. N. Tran, and I. Sbarski, “A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding,” J. Appl. Polym. Sci. 109, 3196–3203 (2010).

Opt. Express (4)

Phys. Plasmas (1)

S. C. Singh, C. Fallon, P. Hayden, M. Mujawar, P. Yeates, and J. T. Costello, “Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas,” Phys. Plasmas 21, 1193–16560 (2014).

Plasma Sci. Technol. (2)

D. Meng, N. Zhao, M. A. Mingjun, W. Yin, H. U. Li, Y. U. Yang, and F. Li, “Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement,” Plasma Sci. Technol. 17, 632–637 (2015).

J. Shao, T. Wang, J. Guo, A. Chen, and M. Jin, “Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement,” Plasma Sci. Technol. 19, 025506 (2017).

Radio Sci. (1)

T. Shiozawa and K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–575 (2016).

Spectrochim. Acta B At. Spectrosc. (6)

E. Vors, C. Gallou, and L. Salmon, “Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure,” Spectrochim. Acta B At. Spectrosc. 63, 1198–1204 (2008).

H. Sobral, C. Sánchez-Aké, and M. Villagrán-Muniz, “Intensity enhancement in cross-beam pulsed laser ablation using two orthogonal targets,” Spectrochim. Acta B At. Spectrosc. 63, 493–497 (2008).

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 265–276 (2005).

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta B At. Spectrosc. 60, 792–804 (2005).

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 112, 23–33 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Diagrams of Laser induced breakdown spectroscope. (S: Splitter; M: Meter; R: Reflector; L1, L2, L3: Len 1, 2, 3; 3D-MS: 3-dimensional mobile station)
Fig. 2
Fig. 2 Bar chart of various amplification with different confinement rings being used to confine the plasma on the surface of silicon slice. The red and blue columns are a comparison of characteristic lines Si I243.5 nm and Si I263.1nm, respectively. The broken line shows the trend of these two amplification ability with relative permittivity increase.
Fig. 3
Fig. 3 The comparison of fluctuation from spectral intensity of Si I243.1 nm with unconfined unit and confined unit being used with (a) PTFE (b) Nylon, (c) SG, and (d) NBR, respectively.
Fig. 4
Fig. 4 The spectral amplification factors for spectral lines of (a) Si I243.51 nm and (b) Si I263.1 nm under different-size PTFE confinement circles. The height is 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm with the diameter D = 2 mm, 3 mm, 5 mm, respectively.
Fig. 5
Fig. 5 (a)Image of interaction between shockwave and plasma and (b)the diagram of shockwave reflected by confined unit.
Fig. 6
Fig. 6 (a) The scores of treatment and origin spectra by PCA and (b) The distribution of scores with component 1 and component 2 in terms of treatment and origin data.
Fig. 7
Fig. 7 (a) Amplified atomic spectrum with confinement unit compared with original atomic spectrum of coal, and inset shows ablated coal slice. The fitting curves of 18 sets of data with respect to carbon (b), ash(c), and volatile (d) of the coal, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln( I λ g k A ki )= E k k B T
p uv I = a 1 p u1 I + a 2 p u2 I + a 3 p u3 I + a k p uv1 I + a h p uv+1 I +
p iv I = a 1 ' p i1 I + a 2 ' p i2 I + a 3 ' p i3 I + a k ' p iv1 I + a h ' p iv+1 I +

Metrics