Abstract

The imaging properties of BaTiO3 glass (BTG) microspheres in the diameter range of 5–50 µm which are fully immersed in a polydimethylsiloxane layer are experimentally studied. Our experimental results show that for both Blu-ray disc samples and the single-layer hexagonally close-packed microsphere array samples, with the increase of the diameter of BTG microspheres, the range of focal image positions (RFIP) increases linearly. When the diameter of BTG microspheres increases from 5 to 50 μm, the RFIP changes from 4 to 25 μm. For the microsphere array samples, Talbot effect is observed, and both the position of Talbot images and the Talbot distance depend on the diameter of BTG microspheres. Numerical simulations indicate that the length of the photonic nanojet changes from 2.9 to 7.1 μm when the BTG microsphere size increases from 5 to 50 μm, and the calculated RFIP is between 6 and 24 μm. The calculated RFIPs match well with the experimental ones. Our researches reveal that the RFIP depends on the length of the photonic nanojet of the BTG microsphere.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution imaging properties of cascaded microsphere lenses

Yun Deng, Songlin Yang, Yang Xia, Yurong Cao, Jianguo Wang, Fengge Wang, and Yong-Hong Ye
Appl. Opt. 57(20) 5578-5582 (2018)

Experimental far-field imaging properties of high refractive index microsphere lens

Minglei Guo, Yong-Hong Ye, Jinglei Hou, and Bintao Du
Photon. Res. 3(6) 339-342 (2015)

Direct imaging of photonic nanojets

Patrick Ferrand, Jérôme Wenger, Alexis Devilez, Martina Pianta, Brian Stout, Nicolas Bonod, Evgueni Popov , and Hervé Rigneault
Opt. Express 16(10) 6930-6940 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [PubMed]
  2. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
  3. H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
    [PubMed]
  4. A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108(5), 051104 (2016).
  5. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
    [PubMed]
  6. F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
    [PubMed]
  7. G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079–15092 (2017).
    [PubMed]
  8. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [PubMed]
  9. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
  10. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [PubMed]
  11. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [PubMed]
  12. M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [PubMed]
  13. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38(16), 2988–2990 (2013).
    [PubMed]
  14. Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transf. 200, 32–37 (2017).
  15. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
  16. H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
    [PubMed]
  17. S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
  18. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
  19. H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
    [PubMed]
  20. H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
    [PubMed]
  21. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).
  22. B. Besold and N. Lindlein, “Fractional talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
  23. A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
  24. R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
    [PubMed]
  25. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
    [PubMed]
  26. V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” United States Patent 9,726,874 (October 1, 2013).
  27. K. W. Allen, “Waveguide, photodetector, and imaging applications of microspherical photonics,” Ph.D. dissertation (University of North Carolina at Charlotte, 2014), Chapter 4: Super-Resolution Imaging through Arrays of High-Index Spheres Embedded in Transparent Matrices, pp. 98–122.
  28. K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).
  29. P. Xi, C. Zhou, E. Dai, and L. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27(4), 228–230 (2002).
    [PubMed]
  30. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [PubMed]
  31. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
  32. A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
  33. A. V. Maslov and V. N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Appl. Phys. Lett. 110, 261107 (2017).

2017 (3)

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079–15092 (2017).
[PubMed]

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transf. 200, 32–37 (2017).

A. V. Maslov and V. N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Appl. Phys. Lett. 110, 261107 (2017).

2016 (5)

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108(5), 051104 (2016).

2015 (3)

2014 (3)

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).

2013 (4)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[PubMed]

Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38(16), 2988–2990 (2013).
[PubMed]

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

2012 (1)

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

2011 (4)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[PubMed]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[PubMed]

2009 (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

2008 (2)

2006 (1)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

2004 (1)

2002 (1)

1997 (1)

B. Besold and N. Lindlein, “Fractional talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).

1836 (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

Allen, K. W.

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

Astratov, V. N.

A. V. Maslov and V. N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Appl. Phys. Lett. 110, 261107 (2017).

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108(5), 051104 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

Backman, V.

Barbastathis, G.

Besold, B.

B. Besold and N. Lindlein, “Fractional talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).

Bonod, N.

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Cárabe, A.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[PubMed]

Dai, E.

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Dervo, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Devilez, A.

Duan, Y.

Farahi, N.

Ferrand, P.

Finlay, J. C.

Geints, Y. E.

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transf. 200, 32–37 (2017).

Gijs, M. A.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

Gijs, M. A. M.

Guardiola, C.

Guo, H.

Guo, W.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Han, Y.

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

Heifetz, A.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

Herzig, H. P.

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

Huszka, G.

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079–15092 (2017).
[PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

Hwang, I.-C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Jia, B.

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Kim, M. S.

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

Lai, H. S. S.

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Lee, S.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Li, L.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Li, W. J.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

Li, Y.

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Lindlein, N.

B. Besold and N. Lindlein, “Fractional talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).

Liu, L.

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

P. Xi, C. Zhou, E. Dai, and L. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27(4), 228–230 (2002).
[PubMed]

Liu, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

Liu, Z.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Maslov, A. V.

A. V. Maslov and V. N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Appl. Phys. Lett. 110, 261107 (2017).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108(5), 051104 (2016).

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

Mühlig, S.

Negro, L. D.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Palovcak, A.

Pianta, M.

Popov, E.

Rigneault, H.

Rockstuhl, C.

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

Scharf, T.

Stout, B.

Sui, G.

Taflove, A.

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

Urbas, A. M.

Walker, D. E.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Wang, F.

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Wang, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[PubMed]

Wang, Z.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

Wen, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Weng, X.

Wenger, J.

Xi, P.

Xu, H.

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

Yan, Y.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Yang, H.

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079–15092 (2017).
[PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

Yang, S.

Ye, R.

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

Ye, Y. H.

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

Yu, H.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Yu, P.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Zemlyanov, A. A.

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transf. 200, 32–37 (2017).

Zhang, B.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

Zhao, Y.

Zhou, C.

Zhou, Z.

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

Zhuang, S.

Ann. Phys. (1)

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-flms with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528(11–12), 901–904 (2016).

Appl. Phys. Lett. (6)

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

A. Darafsheh, N. I. Limberopoulos, J. S. Dervo, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

A. V. Maslov and V. N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Appl. Phys. Lett. 110, 261107 (2017).

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microsphere with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108(5), 051104 (2016).

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).

J. Opt. (1)

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transf. 200, 32–37 (2017).

Langmuir (1)

R. Ye, Y. H. Ye, Z. Zhou, and H. Xu, “Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals,” Langmuir 29(6), 1796–1801 (2013).
[PubMed]

Light Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).

Nano Lett. (1)

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[PubMed]

Nat. Commun. (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[PubMed]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, and L. J. Kaufman, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).

Opt. Commun. (1)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).

Opt. Eng. (1)

B. Besold and N. Lindlein, “Fractional talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).

Opt. Express (8)

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
[PubMed]

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079–15092 (2017).
[PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[PubMed]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[PubMed]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[PubMed]

Opt. Lett. (3)

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

PLoS One (1)

H. S. S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11(10), e0165194 (2016).
[PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[PubMed]

Other (2)

V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” United States Patent 9,726,874 (October 1, 2013).

K. W. Allen, “Waveguide, photodetector, and imaging applications of microspherical photonics,” Ph.D. dissertation (University of North Carolina at Charlotte, 2014), Chapter 4: Super-Resolution Imaging through Arrays of High-Index Spheres Embedded in Transparent Matrices, pp. 98–122.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup; (b) SEM image of a BD; (c) SEM image of a single-layer hcp 960-nm-diameter PS microsphere array.
Fig. 2
Fig. 2 Images of the BD observed through BTG microspheres with different diameters at various optical focal image positions: (a) 10-μm-diameter BTG microspheres; (b) 25-μm-diameter BTG microspheres. The BTG microspheres are fully immersed a PDMS layer, and the z numbers on the right corner of the figures are the relative focal image positions below the center of BTG microspheres. The position of the center of BTG microspheres is set as z~0. The scale bar is 5 μm.
Fig. 3
Fig. 3 (a) The experimental (red curve) and calculated (blue curve) RFIP of the BD observed through different size BTG microspheres; (b) The experimental (red curve) and calculated (blue curve) CIP of the BD observed through different size BTG microspheres.
Fig. 4
Fig. 4 Images of the single-layered hcp 960-nm-diameter PS microsphere arrays observed through different size BTG microspheres at various focal image positions: (a) 10-μm-diameter BTG microspheres; (b) 20-μm-diameter BTG microspheres; (c) Images of the single-layered hcp PS microsphere arrays with no BTG microspheres deposited onto the PS array. The z numbers on the right corner of the figures are the relative focal image positions below (positive) or above (negative) the center of BTG microspheres. The position of the center of BTG microspheres is set as z~0. In Figs. 4(a) and 4(b), the scale bar is 5 μm; while the scale bar is 2 μm in Fig. 4(c).
Fig. 5
Fig. 5 (a) The electric field intensity |E|2 of different size BTG microspheres along the vertical z axis at the center of the photonic nanojet; (b) The length of the photonic nanojet (LPNJ) as a function of the diameter of BTG microspheres. Schematic of the photonic nanojet length is shown in the upper left corner of Fig. 5(b).

Metrics