Abstract

We demonstrate a low noise bidirectional broadband distributed Raman pumping scheme combining dual order co-propagated pumps without increasing the signal RIN level. The noise performance improvement is compared experimentally and numerically with conventional counter-pumping only and bidirectional pumping with only a 2nd order co-pump for a 70nm bandwidth and 61.5km distributed Raman amplifier. The proposed broadband pumping scheme shows 1.2dB maximum noise figure improvement and extends the long-haul transmission reach up to 6150km with a Q-factor improvement of ~0.7dB compared with counter-pumping only scheme.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of 100G DP-QPSK long-haul transmission performance using second order co-pumped Raman laser based amplification

Mingming Tan, Paweł Rosa, Son Thai Le, Ian. D. Phillips, and Paul Harper
Opt. Express 23(17) 22181-22189 (2015)

Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping

M. Tan, P. Rosa, S. T. Le, Md. A. Iqbal, I. D. Phillips, and P. Harper
Opt. Express 24(3) 2215-2221 (2016)

Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier

Jingchi Cheng, Ming Tang, Alan Pak Tao Lau, Chao Lu, Liang Wang, Zhenhua Dong, Syed Muhammad Bilal, Songnian Fu, Perry Ping Shum, and Deming Liu
Opt. Express 23(9) 11838-11854 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).
  2. T. J. Xia, G. A. Wellbrock, M. Huang, S. Zhang, Y. Huang, D. Chang, S. Burtsev, W. Pelouch, E. Zak, H. dePedro, W. Szeto, and H. Fevrier, “Transmission of 400G PM-16QAM channels over long-haul distance with commercial all-distributed Raman amplification system and aged standard SMF in field,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu2B.1.
  3. B. Zhu, D. Peckham, A. H. McCurdy, R. Lingle, B. Palsdottir, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni, “Large-area low-loss fibers and advanced amplifiers for high-capacity long-haul optical networks [Invited],” J. Opt. Commun. Netw. 8, A55–A63 (2016).
  4. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
  5. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Lightwave Technol. 19(8), 1140–1148 (2001).
  6. M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
  7. S. Kado, Y. Emori, S. Namiki, N. Tsukiji, J. Yoshida, and T. Kimura, “Broadband flat-noise Raman amplifier using low-noise bidirectionally pumping sources,” in European Conference on Optical Communication (ECOC 2001), paper PD.F.1.8.
  8. M. Tan, V. Dvoyrin, M. A. Iqbal, S. K. Turitsyn, and P. Harper, “Evaluation of long-haul coherent transmission performance using low RIN forward Raman pump,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), paper AF3D.2.
  9. Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).
  10. J. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004).
    [PubMed]
  11. J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).
  12. M. A. Iqbal, G. R. Martella, F. Gallazzi, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance improvement of broadband distributed Raman amplifier using bidirectional pumping with first and dual order forward pumps,” in Proceedings of 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–4.
  13. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
    [PubMed]
  14. F. Gallazzi, G. Rizzelli, M. A. Iqbal, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance optimization in ultra-long Raman laser amplified 10×30 GBaud DP-QPSK transmission: balancing RIN and ASE noise,” Opt. Express 25(18), 21454–21459 (2017).
  15. M. Tan, P. Rosa, S. T. Le, I. D. Phillips, and P. Harper, “Evaluation of 100G DP-QPSK long-haul transmission performance using second order co-pumped Raman laser based amplification,” Opt. Express 23(17), 22181–22189 (2015).
    [PubMed]
  16. M. A. Iqbal, M. Tan, and P. Harper, “Evaluation of RIN mitigated dual order bidirectional distributed Raman amplification using a broadband first order forward pump,” in European Conference on Optical Communication (ECOC 2017), paper P1.SC1.13.
  17. M. A. Iqbal, M. Tan, and P. Harper, “Enhanced long-haul transmission using forward propagated broadband first order Raman pump,” in European Conference on Optical Communication (ECOC 2017), paper P2.SC6.25.

2017 (1)

2016 (2)

2015 (1)

2014 (1)

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

2008 (1)

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[PubMed]

2007 (1)

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

2006 (1)

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

2004 (2)

Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).

J. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004).
[PubMed]

2001 (1)

Al-Khateeb, M. A. Z.

Ania-Castañón, J.

Ania-Castañón, J. D.

F. Gallazzi, G. Rizzelli, M. A. Iqbal, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance optimization in ultra-long Raman laser amplified 10×30 GBaud DP-QPSK transmission: balancing RIN and ASE noise,” Opt. Express 25(18), 21454–21459 (2017).

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[PubMed]

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

M. A. Iqbal, G. R. Martella, F. Gallazzi, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance improvement of broadband distributed Raman amplifier using bidirectional pumping with first and dual order forward pumps,” in Proceedings of 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–4.

Bayvel, P.

Brinkmeyer, E.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

Cierullies, S.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

DiGiovanni, D. J.

Doran, N.

Ellis, A. D.

Fabbri, S.

Fludger, C. R. S.

Gallazzi, F.

F. Gallazzi, G. Rizzelli, M. A. Iqbal, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance optimization in ultra-long Raman laser amplified 10×30 GBaud DP-QPSK transmission: balancing RIN and ASE noise,” Opt. Express 25(18), 21454–21459 (2017).

M. A. Iqbal, G. R. Martella, F. Gallazzi, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance improvement of broadband distributed Raman amplifier using bidirectional pumping with first and dual order forward pumps,” in Proceedings of 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–4.

Gordienko, V.

Gray, S.

Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).

Hadjar, Y.

Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).

Handerek, V.

Harper, P.

Iqbal, M. A.

Karalekas, V.

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[PubMed]

Kobtsev, S. M.

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

Krause, M.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

Lavery, D.

Le, S. T.

Liga, G.

Lingle, R.

Magill, P. D.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

Maher, R.

Martella, G. R.

M. A. Iqbal, G. R. Martella, F. Gallazzi, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance improvement of broadband distributed Raman amplifier using bidirectional pumping with first and dual order forward pumps,” in Proceedings of 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–4.

McCarthy, M. E.

McCurdy, A. H.

Mears, R. J.

Mondaca, G. S.

Nelson, L. E.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

Palsdottir, B.

Peckham, D.

Perentos, A.

Phillips, I. D.

Pustovskikh, A. A.

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

Renner, H.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

Rizzelli, G.

Rosa, P.

Stephens, M. F. C.

Sygletos, S.

Tan, M.

Traynor, N. J.

Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).

Turitsyn, S. K.

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[PubMed]

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

Wisk, P. W.

B. Zhu, D. Peckham, A. H. McCurdy, R. Lingle, B. Palsdottir, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni, “Large-area low-loss fibers and advanced amplifiers for high-capacity long-haul optical networks [Invited],” J. Opt. Commun. Netw. 8, A55–A63 (2016).

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

Yan, M. F.

B. Zhu, D. Peckham, A. H. McCurdy, R. Lingle, B. Palsdottir, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni, “Large-area low-loss fibers and advanced amplifiers for high-capacity long-haul optical networks [Invited],” J. Opt. Commun. Netw. 8, A55–A63 (2016).

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

Zhou, X.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

Zhu, B.

B. Zhu, D. Peckham, A. H. McCurdy, R. Lingle, B. Palsdottir, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni, “Large-area low-loss fibers and advanced amplifiers for high-capacity long-haul optical networks [Invited],” J. Opt. Commun. Netw. 8, A55–A63 (2016).

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

IEEE Photonics Technol. Lett. (2)

Y. Hadjar, N. J. Traynor, and S. Gray, “Noise figure tilt reduction in ultrawide-band WDM through second-order Raman amplification,” IEEE Photonics Technol. Lett. 16(4), 1200–1202 (2004).

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-Raman-amplified, 73 nm seamless band transmission of 9 Tb/s over 6000 km of fiber,” IEEE Photonics Technol. Lett. 26(3), 242–245 (2014).

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).

Opt. Express (3)

Opt. Quantum Electron. (1)

J. D. Ania-Castañón, A. A. Pustovskikh, S. M. Kobtsev, and S. K. Turitsyn, “Simple design method for gain-flattened three-pump Raman amplifiers,” Opt. Quantum Electron. 39(3), 213–220 (2007).

Phys. Rev. Lett. (1)

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[PubMed]

Other (6)

T. J. Xia, G. A. Wellbrock, M. Huang, S. Zhang, Y. Huang, D. Chang, S. Burtsev, W. Pelouch, E. Zak, H. dePedro, W. Szeto, and H. Fevrier, “Transmission of 400G PM-16QAM channels over long-haul distance with commercial all-distributed Raman amplification system and aged standard SMF in field,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu2B.1.

M. A. Iqbal, M. Tan, and P. Harper, “Evaluation of RIN mitigated dual order bidirectional distributed Raman amplification using a broadband first order forward pump,” in European Conference on Optical Communication (ECOC 2017), paper P1.SC1.13.

M. A. Iqbal, M. Tan, and P. Harper, “Enhanced long-haul transmission using forward propagated broadband first order Raman pump,” in European Conference on Optical Communication (ECOC 2017), paper P2.SC6.25.

M. A. Iqbal, G. R. Martella, F. Gallazzi, M. Tan, P. Harper, and J. D. Ania-Castañón, “Performance improvement of broadband distributed Raman amplifier using bidirectional pumping with first and dual order forward pumps,” in Proceedings of 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1–4.

S. Kado, Y. Emori, S. Namiki, N. Tsukiji, J. Yoshida, and T. Kimura, “Broadband flat-noise Raman amplifier using low-noise bidirectionally pumping sources,” in European Conference on Optical Communication (ECOC 2001), paper PD.F.1.8.

M. Tan, V. Dvoyrin, M. A. Iqbal, S. K. Turitsyn, and P. Harper, “Evaluation of long-haul coherent transmission performance using low RIN forward Raman pump,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), paper AF3D.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of three broadband Raman pumping schemes (a) Scheme-1: counter-pumping only (b) Scheme-2: bidirectional pumping with only 2nd order co-pump and (c) Scheme-3: bidirectional pumping with 1365nm pump and 1425nm pump seed from the input end at 21mW (scheme-3(a)) and 49mW (scheme-3(b)) respectively.
Fig. 2
Fig. 2 Characterization of the amplifier at different pumping scheme (a): measured on-off Raman gain (Insert: Normalized 100GHz channelized broadband ASE input) (b): measured (solid) and simulated (dash) power evolution of 1530nm signal.
Fig. 3
Fig. 3 (a): Measured (solid) and calculated (dash) NF improvement for scheme-2 and 3 with respect to scheme-1 (b) measured signal RIN at 1530nm.
Fig. 4
Fig. 4 Measured (a) signal power variations (SPVs) and (b) signal RIN for 1545.32nm signal.
Fig. 5
Fig. 5 Re-circulating loop setup for coherent WDM transmission with broadband distributed Raman amplified span (Abbreviations: SYNTH = synthesizer, MOD = modulator, LW = linewidth, POLMUX = polarization multiplexer).
Fig. 6
Fig. 6 Transmission performance of different pumping schemes measured at 195.9THz signal: (a) Q-factors versus launch power per channel at 1875km transmission distance (b) Q-factors versus transmission lengths at optimum launch power.
Fig. 7
Fig. 7 Q factor of each signal channel and received spectra at respective maximum distance: (a) counter-pumping only (scheme-1); (b) scheme-2; (c) scheme-3(a) and (d) scheme-3(b) considering forward error correction (FEC) threshold of Q = 8.5dB.
Fig. 8
Fig. 8 Performance comparison of scheme-3(a): (a) using two RIN levels of the 1st order 1425nm co-pump by varying the drive currents and (b) signal RIN; (c) Q-factors versus signal launch power per channel and (d) Q-factors versus transmission distance at optimum launch power measured at 1530.33nm signal.

Tables (1)

Tables Icon

Table 1 Pump powers used in experimental measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P ν ± dz =±{ α ν P ν ± + ε ν P ν + P ν ± [ μ>ν g μν A μ ( P μ + + P μ ) μ<ν ν μ g νμ A μ ( P μ + + P μ ) 4hν μ<ν g νμ A μ ( 1+ 1 e h( νμ ) kT 1 )Δμ ] +2hνΔν μ>ν g μν A μ ( P μ + + P μ )( 1+ 1 e h( μν ) kT 1 ) }
d N ν + dz = α ν N ν + + ε ν N ν + N ν + μ>ν g μν A μ ( P μ + + P μ ) +2hνΔν μ>ν g μν A μ ( P μ + + P μ ) ( 1+ 1 e h( μν ) kT 1 )
d N ν dz = α ν N ν ε ν ( N ν + + P ν + ) N ν μ>ν g μν A μ ( P μ + + P μ ) 2hνΔν μ>ν g μν A μ ( P μ + + P μ ) ( 1+ 1 e h( μν ) kT 1 )
NF= P ASE E ph B 0 G + 1 G
NF( dB )=10log10( NF )

Metrics