Abstract

We demonstrate a polarized all-normal dispersion supercontinuum generated in a birefringent silica microstructured fiber spanning beyond 2.5 µm. To our knowledge, this is the spectra reaching the furthest in mid-infrared ever generated in normal dispersion silica fibers. The generation process was studied experimentally and numerically with 70 fs pump pulses operating at different wavelengths on short propagation distances of 48 mm and 122 mm. The all-normal operation was limited by the zero-dispersion wavelength at 2.56 µm and spectral broadening was stopped by OH absorption peak at 2.72 µm. We identified the asymmetry between propagation in both polarization axes and showed that pumping along a slow fiber axis is beneficial for a higher degree of polarization. Numerical simulations of the generation process conducted by solving the generalized nonlinear Schrödinger equation (NLSE) and coupled NLSEs system showed good agreement with experimental spectra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber

Karol Tarnowski, Tadeusz Martynkien, Paweł Mergo, Krzysztof Poturaj, Grzegorz Soboń, and Wacław Urbańczyk
Opt. Express 24(26) 30523-30536 (2016)

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, and Weiqing Gao
Photon. Res. 6(6) 601-608 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [PubMed]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
  3. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–61.
  4. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [PubMed]
  5. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
    [PubMed]
  6. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 µm,” Opt. Lett. 29(24), 2846–2848 (2004).
    [PubMed]
  7. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [PubMed]
  8. S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
  9. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
  10. C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).
  11. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,”J. Opt. Soc. Am. B 34(4), 764–775 (2017).
  12. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
    [PubMed]
  13. S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21(11), 13305–13321 (2013).
    [PubMed]
  14. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21(2), 249–257 (2004).
  15. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
    [PubMed]
  16. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [PubMed]
  17. M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers,” Opt. Express 24(26), 29406–29416 (2016).
    [PubMed]
  18. X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
    [PubMed]
  19. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
    [PubMed]
  20. C. Strutynski, P. Froidevaux, F. Désévédavy, J.-Ch. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2 μm in step-index tellurite fibers,” Opt. Lett. 42(2), 247–250 (2017).
    [PubMed]
  21. K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 1–11 (2016).
  22. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523–30536 (2016).
    [PubMed]
  23. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550 nm,” J. Lightwave Technol. 35(17), 3772–3779 (2017).
  24. R. B. Dyott, Elliptical Fiber Waveguides (Artech, 1995), Chap. 6.
  25. H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
  26. J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).
  27. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic P., 1986), Chap. 6.
  28. K. Tarnowski, A. Anuszkiewicz, K. Poturaj, P. Mergo, and W. Urbanczyk, “Birefringent optical fiber with dispersive orientation of polarization axes,” Opt. Express 22(21), 25347–25353 (2014).
    [PubMed]
  29. P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
  30. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
  31. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
  32. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
  33. R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 2.
  35. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007).
    [PubMed]
  36. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: Optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
    [PubMed]
  37. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
  38. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 6.

2017 (3)

2016 (3)

2015 (1)

2014 (4)

2013 (1)

2012 (2)

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
[PubMed]

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).

2011 (2)

2010 (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).

2009 (1)

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).

2008 (1)

2007 (1)

2006 (2)

2004 (5)

2000 (2)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[PubMed]

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

1989 (2)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).

Andres, M. V.

Anuszkiewicz, A.

Bache, M.

Bang, O.

Bartels, R. A.

Bartelt, H.

Bastien, S. P.

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).

Bendahmane, A.

Birks, T.

Boppart, S. A.

Bosman, G. W.

Breuer, E.

Brown, T.

Brown, T. G.

Buczynski, R.

Bufetov, I. A.

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).

Chen, W.

Chen, Y.

Chernikov, S. V.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Cordette, S.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Désévédavy, F.

Dianov, E. M.

Domingue, S. R.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Dupont, S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Dvoyrin, V. V.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

Feehan, J. S.

Feurer, T.

Finot, C.

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Froidevaux, P.

Fsaifes, I.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Fujimoto, J. G.

Gadret, G.

Gao, J.

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Giessen, H.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

Guryanov, A. N.

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

Hartung, A.

Heidt, A.

Heidt, A. M.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).

Hooper, L. E.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Hsiung, P.

Hu, L.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

Humbert, G.

Iakushev, S. O.

Ippen, E. P.

Jules, J.-Ch.

Kadulova, M.

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).

Kaminski, C. F.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Kedenburg, S.

Keiding, S. R.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Khopin, V. F.

Kibler, B.

Kiwanuka, S.-S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Klimczak, M.

Knight, J.

Knight, J. C.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Koch, F.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).

Kopf, D.

Krok, P.

Lægsgaard, J.

Laegsgaard, J.

Lederer, M.

Leon-Saval, S.

Lepers, C.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Li, X.

Liao, M.

Liu, X.

Liu, Y.

Martynkien, T.

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523–30536 (2016).
[PubMed]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).

Mashinsky, V. M.

Medvedkov, O. I.

Mergo, P.

Millot, G.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Mörz, F.

Neustruev, V. B.

Nishizawa, N.

Olszewski, J.

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).

Poturaj, K.

Price, J. H. V.

Provost, L.

Pysz, D.

Qu, Z.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Radzewicz, C.

Ranka, J. K.

Rohwer, E. G.

Salgansky, M. Yu.

Schwoerer, H.

Shubin, A. V.

Shulika, O. V.

Silvestre, E.

Siwicki, B.

Skibinski, P.

Smektala, F.

Sobon, G.

St J Russell, P.

Statkiewicz, G.

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).

Steinle, T.

Steinmann, A.

Stentz, A. J.

Stepien, R.

Stifter, D.

Strutynski, C.

Sukhoivanov, I. A.

Sunak, H. R. D.

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).

Tarnowski, K.

Taylor, J. R.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).

Tu, H.

Turchinovich, D.

Urbanczyk, W.

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523–30536 (2016).
[PubMed]

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 1–11 (2016).

K. Tarnowski, A. Anuszkiewicz, K. Poturaj, P. Mergo, and W. Urbanczyk, “Birefringent optical fiber with dispersive orientation of polarization axes,” Opt. Express 22(21), 25347–25353 (2014).
[PubMed]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).

Vasiliev, S. A.

Wabnitz, S.

Wadsworth, W.

Ware, C.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

Wiesauer, K.

Windeler, R. S.

Xue, T.

Zhou, B.

Zhu, Z.

IEEE Photonics J. (1)

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 1–11 (2016).

IEEE Photonics Technol. Lett. (1)

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).

J. Eur. Opt. Soc (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

J. Opt. A, Pure Appl. Opt. (1)

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).

J. Opt. Soc. Am. B (3)

Laser Phys. Lett. (1)

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).

Meas. Sci. Technol. (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).

Opt. Commun. (2)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).

Opt. Express (12)

Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
[PubMed]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[PubMed]

J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007).
[PubMed]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers,” Opt. Express 24(26), 29406–29416 (2016).
[PubMed]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523–30536 (2016).
[PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[PubMed]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
[PubMed]

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21(11), 13305–13321 (2013).
[PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[PubMed]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
[PubMed]

K. Tarnowski, A. Anuszkiewicz, K. Poturaj, P. Mergo, and W. Urbanczyk, “Birefringent optical fiber with dispersive orientation of polarization axes,” Opt. Express 22(21), 25347–25353 (2014).
[PubMed]

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Other (6)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–61.

C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, and G. Millot, “Spectrum slicing of a supercontinuum source for WDM/DS-OCDMA application,” in International Conference on Transparent Optical Networks, ICTON (2008).

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic P., 1986), Chap. 6.

R. B. Dyott, Elliptical Fiber Waveguides (Artech, 1995), Chap. 6.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 6.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Images of fabricated fiber: SEM images (a), (b); post-processed image (c): white – germanium doped silica, grey – silica, black – air; calculated normalized electric field distributions in fundamental modes at different wavelengths λ with effective area Aeff values given (d), (e), (f).
Fig. 2
Fig. 2 Fiber model used in FEM calculations. The small air holes are connected with solid line to indicate the five full rings accounted in the model.
Fig. 3
Fig. 3 Comparison of measured (blue points) and calculated (black solid line) chromatic dispersion for the considered fiber.
Fig. 4
Fig. 4 Comparison of measured (blue) and calculated (black) phase modal birefringence for the fabricated fiber. Black solid line represents the calculated overall birefringence, while black dashed line represents the contribution of form birefringence (stress effect disregarded).
Fig. 5
Fig. 5 Total attenuation coefficient applied in the simulations of nonlinear propagation.
Fig. 6
Fig. 6 Comparison between measured (a) and calculated (b) spectra for different pump power levels. Pump central wavelength is 1.8 μm. Fiber length is 122 mm. For experimental data average pump power is given; Pa and Pb denote powers, which were too low to be measured accurately. For simulated data the highest peak power P0 is 400 kW.
Fig. 7
Fig. 7 Comparison between measured (a) and calculated (b), (c) spectra for different pump wavelengths 1.8 µm, 2.0 µm, 2.2 µm, 2.4 µm (indicated by vertical dashed lines in corresponding colors). Measured average pump powers were 440 µW, 420 µW, 430 µW, 430 µW, respectively. Simulation peak power was 400 kW. Simulations conducted with Raman scattering accounted for (b) and disregarded (c).
Fig. 8
Fig. 8 Comparison between measured (a), (b) and calculated (c), (d) spectra generated in 48 mm long fiber for different pump power levels. Vertical dashed lines indicate pump central wavelengths: 1.8 μm (a), (c), and 2.4 µm (b), (d). For experimental data the average pump power is given; Pa and Pb denote powers too low to be measured accurately. For simulated data the highest peak power P0 was 400 kW.
Fig. 9
Fig. 9 Simulated SC spectral evolution over propagation distance for pumping at 1.8 μm (a) and 2.4 μm (b). The peak power was 400 kW. Black dashed lines denote pumping wavelengths and white dashed lines denote distances at which maximum spectral broadening is reached, respectively 26 mm (a) and 14 mm (b).
Fig. 10
Fig. 10 Comparison between measured (a) and calculated (b), (c) spectra generated in 122 mm long fiber under pumping at 2 µm in each polarization axis: ss – pumping in slow axis, observation in slow axis, sf – pumping in slow axis, observation in fast axis, ff – pumping in fast axis, observation in fast axis, fs – pumping in fast axis, observation in slow axis. Ideal excitation is assumed in (b), and 1 degree polarization misalignment is assumed in (c).

Metrics